Developments on ARCADIA State of the art and future perspectives

Marco Mandurrino¹, on behalf of the ARCADIA Collaboration

¹ *INFN* Torino marco.mandurrino@to.infn.it AIDAinnova 3rd Annual Meeting Mar 18–21, 2024 Catania, Italy

The ARCADIA sensor concept

Fully-depleted Monolithic Active Pixel Sensors

- *n*-type high resistivity substrate with *n*-type epitaxial active volume
- 110 nm CMOS process (LFoundry)
- deep-p-wells shielding n-wells with electronics
- reverse-biased junction: depletion grows from back to top

Main constraints:

- full-depletion condition
- edge breakdown induced by the topside voltage
- punch-through due to the backside bias

The ARCADIA sensor concept

Substrates and post-processing

Type 1:

thinning to 100 or 300 μm total thickness

Type 2:

thinning, backside **p**⁺ **implantation** and laser annealing

Type 3:

thinning, **lithography**, backside *p*⁺ **implantation** and laser annealing, **insulators/metal** deposition and patterning

Structures:

- small pixel arrays with different pitch (10 μm 25 μm 50 μm) with and w/o active readout
- strip detectors with and w/o active readout
- passive test structures for sensors characterization and process qualification
- ► Main Demonstrator: 25-µm-pitch pixel sensor, 512 × 512 array

ARCADIA Main Demonstrator

REAL PROPERTY	1 4 2 4 2 1 4 2 4 -		
		MI (16:52 G) 0100300 (17:52 G) 10:00 (

passive test structures block

Electrical characterizations

- ▷ different **pixel layouts** have been tested
- intra- and inter-wafer uniformity evaluated
- TCAD parameters adjusted on experimental results

▷ capacitance dominated by the sensor perimeter

Dynamic response with laser

- 10 μm FWHM focused red laser
- ▶ **50-µm-pitch** test structure
- \triangleright V_{top} = 0.8 V and V_{back} = -22 V
- ▶ **10 µm** steps in *X* and *Y* directions

Backside layout optimization (Type 3)

M. Mandurrino, INFN Torino

Pixel radiation hardness: X-rays @ University of Padova, Italy

▷ increase of **pixel leakage** current with **Total Ionizing Dose** (TID) due to **surface generation**

▷ capacitance post-irradiation overestimated by the Perugia model with Hamamatsu parametrization

- ⊳ Pixel pitch: 25 µm
- ▷ Array core area: 1.28 cm × 1.28 cm (262144 pixels)
- ▷ Electronics: analog and digital, with in-pixel threshold and data storage
- Architecture: event-driven, with active pixels sending their address to the chip peripheral circuits
- ▷ (Low) power: 20 mW/cm²
- ▷ (High) event rate: 100 MHz/cm²

▶ Total **power consumption**: **10 mW/cm²** at low event rates

▶ Design specification: 20 mW/cm² at rates up to 100 Mevents/cm²

M. Mandurrino, INFN Torino

3rd AIDAinnova Annual Meeting, Catania, Mar 18–21, 2024

100

ALICE 3 TOF detector:

- ▷ high-resolution tracking and vertexing
- ▷ particle ID with low $p_T \Rightarrow \sigma_t \sim 20 \text{ ps}$

ALICE 3 TOF detector:

- ▷ high-resolution tracking and vertexing
- ▷ particle ID with low $p_T \Rightarrow \sigma_t \sim 20 \text{ ps}$

Sensor structure and layout

 V_{top} (30-40 V) determines the gain, while V_{back} (-30 V) defines the drift field in the substrate

top voltage limited by edge breakdown backplane bias limited by punch-through

Layout A2:

standard solution: direct path to the n^+ collection electrode \Rightarrow more uniform time response; NO multiplication of charges at borders

Layout A1:

deep-p-wells are in con-

nection with the *p*-gain

charge multiplication

implant \Rightarrow more **uniform**

▷ four **gain dose splittings** to cope with implantation uncertainties

- ▷ target: gain in the range 10 30
- ▷ 50, 100 and 200 µm active thicknesses

MadPix: first small-scale (4 × 16 mm²) demonstrator with gain and integrated electronics

- 8 matrices (64 pixel pads each) implementing different sensor and front-end flavours
- \vartriangleright pads of 250 × 100 μm^2
- ▷ readout: 64 × 2 analog outputs on each side
- ▷ **rolling shutter** of single matrix readout

Front-end (in-pixel)

- Cascoded common source amplifier, followed by a differential buffer (1.2V)
- AC-coupled with sensor (in order to decouple it from the sensor top voltage)
- Power consumption: 0.18 mW/ch

Source follower off-pixel buffers (3.3V)

- ▷ AC-coupled with FE
- Power consumption: 1.65 mW/ch

MadPix: first small-scale (4 × 16 mm²) demonstrator with gain and integrated electronics

Noise and slew-rate characterization

First data with **beta source** (⁹⁰Sr)

0.004 **C** 0.002 О Data Simulation C -3 -2 $^{-1}$ Time [s] 1e-8

M. Mandurrino, INFN Torino

Electrical characterization – standalone passive test-structures

Vtop [V]

PM 250 A1

Vtop [V]

Differently from standard LGADs, the *C*(*V*) does not allow to reconstruct the whole gain implant profile, since the **gaps** between **deep-***p***-well** and *p*-gain are depleted earlier

The **knee** observed in the *C*(*V*) curves depends on the **size** of the gap. A **larger gaps** are fully **depleted** at **lower voltage**

Dynamic characterization – standalone passive test-structures

Focused IR laser spot (\sim 10 μ m) Backside illumination

Investigations about the **gain** (target: **10 – 30**)

the *p*-gain implant energy has to be reduced by ~30% to recover the mismatch

Conclusions

- robustness of design tools (both for electronics and sensor part), as well as effectiveness of the LFoundry-INFN collaboration and maturity level of the sensor concept have been demonstrated by the first two ARCADIA runs
- we proved the compatibility of the LGAD technology with the CMOS process through our last production
- the gain layer has been implanted with a lower energy than what expected, as confirmed by either measurements and TCAD simulations
- ... what's next?
- we are waiting the release of a new short-loop engineering run with a different splittings of *p*-gain implant doses to cope with process uncertainties and achieve the target of having CMOS sensors with internal gain between 10 and 30

Acknowledgments

We acknowledge:

- the European Union's Horizon 2020
 Research and Innovation programme
 within the AIDAinnova GA 101004761
- the Italian National Institute for Nuclear Physics (INFN) within the call ARCADIA

Thank you for the attention!

backup

Pixel characterization

Active thickness (μm)	48	100	200
bias voltage (V)	25	20-35	60-100
dark current density (pA/cm ²)	100-350	230 - 500	650 - 2000

static characteristics

Pixel pitch (μm) @ 100-μm-thick	10	25	50
capacitance (fF)	1.9	3	12.7
time for 90% charge collection with picosecond IR laser (ns)	4	10	31

dynamic characteristics

dark currents in11.5 mm × 1.5 mmYpixel arrays with10different active0thicknesses10

M. Mandurrino, INFN Torino

M. Mandurrino, INFN Torino

3rd AIDAinnova Annual Meeting, Catania, Mar 18–21, 2024

dark current between Designed for test at the probe station and with external amplifiers 10^{-2}

The ARCADIA run-3

Electrical characterization – standalone passive test-structures

Square passive pads with large

fill-factor: 250 µm × 250 µm

Rectangular passive pads:

70 μm × 250 μm

Dynamic characterization – standalone passive test-structures

σ_t simulations with MC

Electronics noise impact on the time resolution

σ_t simulations with MC

Time resolution vs. sensor width

Capacitance vs. bias curves

Measurements

Differently from standard LGADs, the *C*(*V*) does not allow to reconstruct the whole gain implant profile, since the **gaps** between **deep**-*p*-**well** and *p*-gain are depleted earlier

TCAD Simulations

Qualitative agreement. We need to **fine tune** the **lateral spreading** of doping profiles to match the experimental C(V) characteristics

Optimization of simulation tools

Signal simulations w/ and w/o default models (and parameters) for TCAD and Montecarlo

ΑΡζΑΡΙΑ

Optimization of simulation tools

Signal simulations w/ and w/o default models (and parameters) for TCAD and Montecarlo

ΑΡζΑΡΙΑ

Space-charge effect

Electric field screening effect: (high-energy) particle injection from backside Difference between *static* and *run-time* updated field profiles (in TCAD) during the transient

