

AIDAinnova 3rd Annual Workshop Catania, 18-21 April 2024 https://indico.cern.ch/event/1307202

Ajit Kumar, on behalf of the Belle II VTX collaboratio

- General concepts for high luminosity super B factory
- On-going activities at SuperKEKB & Belle II (LS1)
- Upgrade plans on the mid-term (LS2)
- Soing chiral?

The Belle II experiment

<u>A super B-factory (after Babar and Belle)</u>

- e+ e- collisions with asymmetric energy $\sqrt{s} = M_{Y(4S)}$
- Physics based on integrated luminosity >> ab⁻¹

<u>The SuperKEKB collider @ KEK, Tsukuba, Japan</u>

- Currently world highest luminosity 4.7 10³⁴ cm⁻².s⁻¹
- Restarting after long shutdown 1 (2022-23)
- Instantaneous luminosity ramping up > 10^{35} cm⁻².s⁻¹ in coming years

Belle II upgrade program

- Increased robustness against beam-induced background rate
- More physics per integrated luminosity
- Framework CDR validated, to be public soon

Current vertex Detector

2 layers DEPFET pixels + 4 layers DSSD

HER: e⁻ 7GeV

Belle II

Vertex detector upgrade: the VTX project

Concept = 5 layers with pixel sensors

- high space-time granularity & low material budget
 - very low occupancy $< O(10^{-4}) =>$ tracking efficiency
 - Better tracking efficiency at low momentum
 - Higher vertexing precision / current VXD
- Lighter services & "easy" geometry
 - adaptable to potential change of interaction region

Technical choices

• Same pixel sensor for all layers = OBELIX MAPS (main option)

- SOI (alternative)
- 30-40 μm pitch with 100 ns integration time
- All-silicon ladders (PXD-inspired) for 2 inner layers (0.1% X_0) = **iVTX**
 - See M.Vos' talk during WP10
- "Standard" supported ladders (ALICE-ITS2 inspired) for 3 outer layers (0.5-0.8 % X₀)
 - See F.Pallas' talk during WP10

)=4) => tracking etficiency at low momentum / current VXD

= oVTX

Max radius 18 cm & length 70 cm \Rightarrow 1 m²

University of Bergamo University of Bonn University of Dortmund University of Göttingen Queen Mary University London CPPM Marseille IJClab Orsay INFN Pavia INFN & University of Pisa IPHC Strasbourg KEK Tsukuba IFIC Valencia HEPHY Vienna

OBELIX key features

- Pixel matrix with detection efficiency proven at radiation levels (5x10¹⁴ n_{eq}/cm²) and time-stamping at 50 ns
- Handling of Belle II trigger rate (30 kHz) & delay (10 μs) at hit rates (120 MHz)
- Power dissipation adapted (<200 mW/cm²) to air cooling (inner layer) and water cooling (outer layer)
- Simplified system integration

- Matrix extended from **TJ-Monopix2** (F. Hügging's talk)
- BCID clock slowed to 20 MHz
- Radiation-tolerance tested during July 2023 beam

- Implementation of trigger logic (TRU) in digital design
 Verification with simulation
- Optimised digital logic Reduced analogue biasing under test
- LDO power regulator on chip
- 1 LVDS (320 MHz) output per chip

=> See M. Babeluk's talk at last AIDAinnova workshop: <u>https://indi.to/6nzms</u>

OBELIX-1 main functional blocs

OBELIX-1 optional features

Pitch	33 µm	
Signal ToT	7 bits	
Integration time	50 To 100 ns	
Time stamping	<5 ns for hit rate < 10 MHz/cm ²	
Hit rate max for 100% eff.	120 MHz/cm ²	
Trigger handling	30 KHz with 10 μs delay	
Input to trigger	~10 ns resolution with low granularity	
Power (with hit rate)	120 to 200 mW/cm ² (1 to 120 MHz/cm2)	
Bandwidth	1 output 320 MHz	

OBELIX-1 specifications & layout

m²

Pitch	33 µm	OBELIX-1	2x2 pixels pitch 33x33 μ
Signal ToT	7 bits	matrix: 896x464 pixels overall size 30.2x18.8 mm ²	
Integration time	50 To 100 ns		
Time stamping	~5 ns for hit rate < 10 MHz/cm ²	matrix	奏日
Hit rate max for 100% eff.	120 MHz/cm ²	analogue periphery	
Trigger handling	30 KHz with 10 μs delay	digital	
Trigger output	~10 ns resolution with low granularity	periphery	
Power (with hit rate)	120 to 200 mW/cm ² (1 to 120 MHz/cm2)		
Bandwidth	1 output 320 MHz		واور

TJ-Monoipix2 test at DESY beam – July 2023

EUR@:LABS

EUROPEAN LABORAT

Conditions

- Electron beam at 5 GeV
- ADENIUM (ALPIDE) telescope

TJ-Monopix-2 under test

- Room temperature
- threshold 250-300 e-
- 4 front-ends
 - 2 amplifers : normal (NF) and cascode (CASC)
 - 2 diode couplings: DC and AC (or HV)
- Sensitive layer
 - epitaxy 30 µm
 - Biasing for irradiated sensor:

Irradiated sensor

 5 x 10¹⁴ n_{eq}/cm² (with 24 MeV protons)

ampli	coupling	Efficiency (%)
Normal	DC	99.99
Cascode	DC	99.79
Normal	AC (HV)	99.13
Cascode	AC (HV)	98.11

SuperPixel inpixel efficiency (Normal – DC)

> No study yet with temperature

Concept of PTD module

- Exploit hit-OR = asynchronous OR of all pixel outputs in one column
- Time sampling at max chip clock (169.7 MHz) = 2.95 ns
 - PTD does not know fired pixel position
 - Time-position correlation possible if only 1 pixel in column
 => max hit-rate allowed ~10 MHz/cm²
- Output status of 8 macropixels each ~100 ns

Cost

- Power hungry feature => disabled for inner layers (iVTX)
- Absolute resolution limited by time-walk and process-voltage-temperature variations
- Calibration compulsory

- Time resolution measured in test beam
 - After calibration (time-walk...)
 - 3 ns for irradiation sensor (5 x 10^{14} n_{eq}/cm²)

Input to trigger

Concept of TTT module

- Exploit hit-OR = asynchronous OR of all pixel outputs in one column
- Group N=112 columns on 1 macropixel = 1 striplet of 14 x 3 mm²
 8 macropixels per sensor
- Build 8 bits (status of each macropixels) within 30 ns
- Output 8 bits status of each ~100 ns

On-going activities on this exploratory feature:

- Simulation on-going, taking into account time-walk, hitOR delay along column and time binning
- Additional power under evaluation
- Low granularity not useful at 120 MHz/cm2 of inner layer => **only for 3 outer layer**
 - Tracking strategy under construction for evaluation

TJ-Monopix2 matrix for Belle II upgrade

- Validation with first beam test with irradiated sensor at Belle II expected fluence
- Additional beam test in 2024 for systematic studies

OBELIX design

- All features designed for April but power regulator
- Simulation and verification on-going
- Next internal review mid-April 204

 submission expected few months after

SUPPLEMENTARY SLIDES

Belle II detector Upgrad

A. Kumar - Status of OBELIX for Belle II - AIDAinnova, Catania, 2024-03-19

Belle II, another view

