

AIDAINNOVA ANUAL MEETING 2024 LATEST RESULTS OF THE MONOPIX DEVELOPMENT LINES

Fabian Hügging on behalf of the Monopix testing teams

Mar 19th 24

Fabian Hügging – AlDAinnova Annual Meeting, Catania

- Designed in 180 nm TowerSemiconductor CMOS technology
- 2x2 cm² chip size
 - = 33.04x33.04 μ m² pixel pitch
- Small charge collection electrode relative to pixel pitch
- Full scale column length with column-drain R/O architecture
- Substrate resistivity >1 kΩcm
- Baseline for a new DMAPS developed for the Belle II VTX upgrade

TJ-Monopix2 Specifications

- Improved front-end to lower noise and threshold
 - TJ-Monopix1 ~350 e- THR and ~16 e⁻ noise
 - Observed RTS noise tail
- 7 bit ToT information @ 25 ns
- 3 bit in-pixel threshold tuning
 - More in-pixel logic at smaller pixel size
- Triggerless readout
- 4 front-end variations based on proven design from predecessor:
 - Cascoded version
 - AC coupled (HV) front-ends biased via n-well

Laboratory Measurements

- Extract mean tuned **threshold of ~250 e**⁻ and mean **ENC of ~6 e**⁻ from s-curve scan
 - Sufficient for excellent hit-detection efficiency (MIP charge MPV >2500 e⁻)
 - Threshold dispersion significantly reduced by 3 bit in-pixel trimming
 - No RTS noise tail

Threshold Oscillation

- Threshold depends on arrival time of signal (leading edge)
 - Amplitude O(50 e⁻) → Factor 10 larger than ENC
 - Dominant oscillation frequency roughly 5 MHz
- LE/TE sampled with 40 MHz clock in pixel
 - Bits of counter toggle in $\frac{40 MHz}{4/8/16/...}$
 - 4/8/10/...
- Peak of pre-amplifier transfer function 2-10 MHz
 - Very sensitive to frequency of counter bit toggling
 - Cross-talk cannot be mitigated while LE/TE sampling
- Workaround for (injection based) scans:
 - Reset of 40 MHz clock with respect to injection
 - Disable LE/TE sampling and charge measurement

TJ-Monopix2 Hit Detection Efficiency

- Comparison of front-end variations for epi substrate with gap in n-layer
 - Measured at approx. 250 e⁻ threshold for all samples
 - DC coupled at -6 V bias voltage (left, middle), AC coupled +15 V bias voltage (right)
 - Uniform hit detection efficiency >99% with no losses in pixel edges

- Measure delay between scintillator and HitOr signal with 640 MHz clock
- Estimate in-time ratio of hits in given time window of trigger distance distribution
- For 30 µm epi chip with n-gap modification and standard front-end:
 - **99.68% within 25 ns** (ATLAS BX frequency) In-time ratio Corrected scintillator-HitOr delay 1.00 10^{4} 120 0.95 100 10³ Ratio of in-time hits 60 50 50 80 [rigger delay [ns] 10² 10² 40 20 101 0.80 0 -20 100 0.75 20 15 25 30 500 1000 1500 2000 2500 3000 Seed charge (time over threshold) [ns] Time since trigger [ns]

Mar 19th 24

—

Fabian Hügging – AIDAinnova Annual Meeting, Catania

25 ns: (99.68 ± 0.01) %

45

50

35

40

20 ns: $(99.52 \pm 0.01)\%$

 $15 \text{ ns}: (98.99 \pm 0.01)\%$

In-pixel Signal Propagation

- Study in-pixel timing with telescope tracking data
- Investigate trigger delay relative to charge collection electrode
 - Electrodes indicated as white dot
- Up to 3.5 ns difference in delay due to charge propagation time to small electrode

- Designed in 150 nm LFoundry CMOS technology
- 2x1 cm² chip size
 - 50x150 μ m pixel pitch
- Large charge collection electrode relative to pixel pitch
- Full scale column length with column-drain R/O architecture
- Substrate resistivity >2 kΩcm

LF-Monopix2 Specifications

- Full in-pixel electronics while reducing the pixel pitch by 40% of predecessor
- 6 bit ToT information @ 25 ns
- 4 bit in-pixel threshold tuning
- 6 front-end variations available
 - Differing in CSA, feedback capacitance, tuning
- Proton irradiated samples up to 2e15 neq/cm² available (100 μm, backside processed)
 - Not powered during irradiation
 - Annealed 80 min @ 60 °C

LF-Monopix2 (Feb 2021)

Leakage Current and Gain

- Measure leakage current per cm² at -20 °C environmental temperature
 - Non-irradiated at room temperature
- Breakdown at ~460 V for non-irradiated sensors
- At 100 V bias voltage:
 - Increase in leakage current ~5 μA/cm² per irradiation step of 1e15 neq/cm² fluence

I-V curve comparison @ different fluences

- Operated in controlled laboratory environment @ -20 °C
- Tune-able to approx. 2 ke⁻ mean threshold at all irradiation steps
 - Expected charge MPV of MIP at full depletion around 6 ke⁻
- Ca. 40% increase in ENC per irradiation step of 1e15 neq/cm² fluence

Depletion Depth of LF-Monopix2

- Extract calibrated charge MPV from Landau shaped beam spectrum
 - Measured with 5 GeV electrons at DESY
- Full depletion reached around 200 V after irradiation to 2e15 neq/cm²
 - Non-irradiated sensors fully depleted at 15-20 V

Hit Detection Efficiency Studies

- After **2e15 neq/cm²** fluence still >99 % hit-detection efficiency
 - Measured >98 % mean in-time efficiency within 25 ns window —
 - Measured at 2 ke⁻ threshold and 300 V bias (full depletion) _
 - Almost 1 % masked pixels due to high ENC —

300

Hit-detection efficiency vs bias voltage

UNIVERSITÄT BONN

In-Time Efficiency for Higher Gain

- Compare to pixels with smaller feedback capacitance
 - Verified larger gain by measurement (at 1e15 neq/cm²)
- Higher signal gain improves timing performance
 - Mean in-time efficiency of 99.6% @ 2e15 neq/cm²
 - Only 0.5% pixels masked (smaller matrix)

In-pixel, in-time efficiency (mean 99.60% @ 2e15 neq/cm²)

Conclusion and Outlook

- Non-irradiated TJ-Monopix2 show hit-detection efficiencies >99.9%
 - More than 99% of hits registered within 25 ns
- LF-Monopix2 fully operational after proton irradiation to 2e15 neq/cm²
 - >99% hit detection efficiency with ~1 % masked pixels due to high ENC

Upcoming measurements:

- Studies with neutron irradiated samples
- TID irradiation campaign in the next month(s)

Recent Publications:

- Test-beam performance of protonirradiated, large-scale DMAPS in 150nm CMOS technology (VERTEX23) DOI: 10.22323/1.448.0043
- Timing performance of monolithic CMOS pixel detector front-end inn 180nm technology (PACET24) (accepted, to be published)
- Cross-talk of a large-scale DMAPS in 180nm CMOS technology (HSTD23) (Submitted, under revision)

Thank you for your attention!

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under GA No. 675587-STREAM, 654168 (AIDA-2020) and 101004761 (AIDA-Innova)

This project has received funding from the European Union's Horizon Europe Research and Innovation programme under Grant Agreement No 101057511.

Backup