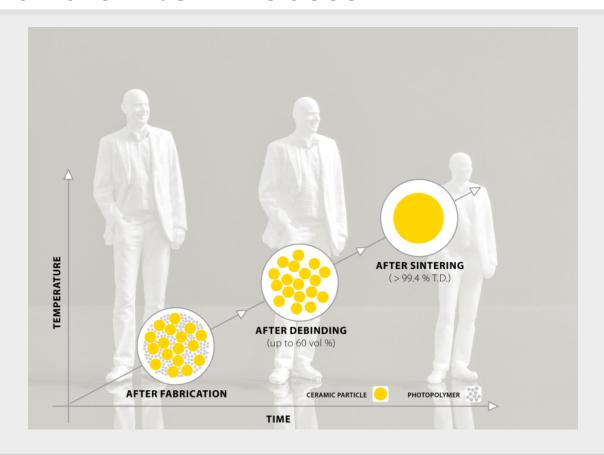

AIDAinnova WP10 3D printed ceramics

Martin Schwentenwein

A closer look at our LCM Technology

Blue light cures the photosensitive formulation

Process Chain

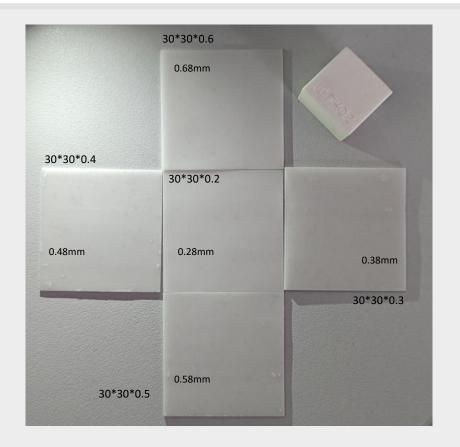


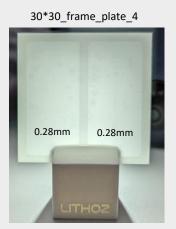
CAD DESIGN

Debind and Sinter Process

Aluminum oxide

ID	Material	Number of pieces	Type
E22447	Alumina	7	Plates
E22448	Alumina	7	Plates
A22352	Alumina	6	Discs
A22354	Alumina	9	Discs
A22353	Alumina	8	Discs
A22355	Alumina	7	Discs





Aluminum nitride

Aluminium Nitride

Aluminium Nitride

- Tailoring of formulation
- Optimization of sintering
 - density of 3.35 g/cm³
 - Thermal conductivity: 212 W/m.K (preliminary)
 - Maximum wall thickness: 4 mm
 - Minimum wall thickness: 0.2 mm
 - Maximum aspect ratio: 10
 - Bending strength: 360 mPa (m = 10)

200µm thin plate

Comparison

- Aluminum oxide (Al_2O_3) :
 - High maturity, robust, and well-commercialized 3D printing process
 - The present limit lies in the building envelope (maximum 190 x 120mm^2 x,y for the green part).
- Aluminum nitride (AIN):
 - 3D printing process works
 - Warping and deformations induced by the sintering steps are slightly greater for AlN than for Al_2O_3 (higher temperatures + inert atmosphere).
 - The building envelope limit remain the same

Aluminium Nitride

- Warping/deformation occurs particularly with parts with high aspect ratio such as thin plates;
 potential methods to solve this are:
 - Grinding/Polishing
 - Adaption of sintering method
 - Compensating warping by design (simulation)
 - Avoiding thermal post-processing

Grinding/Polishing

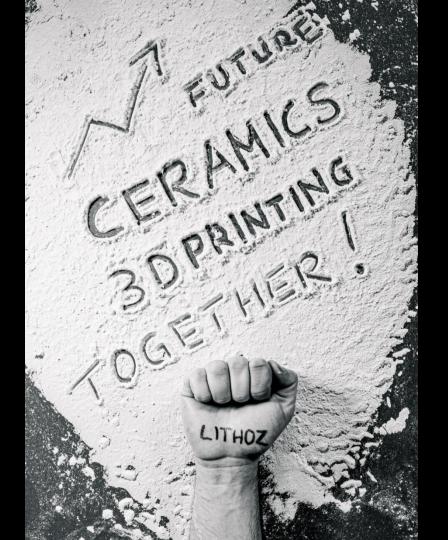
 Planning of trials with Fraunhofer IKTS from Germany

- Maximum component size that can be grinded under investigation
- Grinding equipment for preparation of test samples was just put into service at Lithoz

Adaption of sintering method

- Sintering trials with new service provider (FGK from Germany) ongoing
- First runs conducted, characterization pending

Simulation of debinding/sintering



- No activities are planned
 - Are there competencies in the AIDAinnova consortium?

Composites

- Avoiding debinding and sintering -> no shrinkage and thus no (or very limited) deformation
 - Composites based on standard polymer matrix are too soft
 - New polymer matrices only allow lower solids loading with AIN (18vol% vs 44vol%)
 - New Epoxy-based resins will potentially be provided by CERN

LITHOZ

Manufacture the Future.

LITHOZ GmbH

Mollardgasse 85a/2/64-69 1060 Vienna/AUSTRIA Phone: +43 1 9346612-204 mschwentenwein@lithoz.com

WWW.LITHOZ.COM