

Progress on R&D at INFN-Pisa

<u>F. Bosi</u>

on behalf of the INFN Pisa mechanical studies group

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

- Light structure for CEPC
- Light structure for Belle 2 DMAPS VTX Upgrade
- Conclusions

Progress on R&D at INFN-Pisa

19 March 2024

CepC Tracker

DETECTOR

Total thickness 372 μm Total copper 36 μm

- Based on ATLASPIX3 R&D
 - <u>50 x 150 μm2</u>
 - Up to 1.28 Gb/s downlink
 - TSI 180 nm process
 - 132 columns of 372 pixels
- Active length (r-phi x z)
 - <u>18.6 mm x 19.8 mm</u>
- Module is made of 2x2 chips
- Power goal 100 mW/cm² (175 now)
- Module tested on beam (DESY)

Collaboration: INFN, IHEP, KIT, Liverpool

Long Stave for the Outer Tracker of the CEPC Experiment

Long Stave Exploded View

- LAMINATED FOIL
- Th=0.5 mm of 550x460 mm²
- Carbon Fiber MJ46

Single truss structure realized by WataJet Company Special process waterjet technology (precision 50 µm)

Single truss structure mask assembled and glued on the mask

SINGLE SHORT TRUSS STRUCTURE BY SHORT MASK

Single truss structure realized

glueing with Araldite 2011 and Cyanacrlilate

Until now three truss structures realized

SINGLE LONG TRUSS STRUCTURE BY LONG MASK

One sample realized until now

EXPERIMENTAL TEST FOR THE SAGITTA VALUE OF SUPER WEIGHT LOAD

• Test for sagitta realized on the CNN measuring machine P = 200 g

Sagitta measured at the center and at the point where applied the load

EXPERIMENTAL TEST FOR THE SAGITTA VALUE OF THE REAL WEIGHT

Test for sagitta realized on the CNN measuring machine

Sagitta measured at the center of the truss

TRUSS STRUCTURE UNDER MEASURING MACHINE

- Truss Structure positioned under the 3D CNN Measuring Machine Hexagon DEA GHIBLI
- Volume measured 3500x1500x1800 mm³
- Precision X,Y,Z axis 4,5 micron

Super Weight Test

- Concentrated load 200 g at 450 mm from each edge
- Sagitta at 450 mm from the edge = 800micron
- Sagitta at the center of the structure = 900 micron

(Some difference with the simulation value attributable to a non conformal CFRP material: to be optimized)

Real Weight Test

- Uniformily load distributed of 164,85 g
- Sagitta at 450 mm from the edge =210 micron
- Sagitta at the center of the structure = 280 micron

- First Frequency of resonance = 79,6 Hz
- Second frequency of resonance = 81,4 Hz
- Third Frequency of resonance = 166,6 Hz

The DMAPS Upgrade of the

The SuperKEKB collider is planning a major upgrade of the I.R. to reach the design luminosity.

- All-layer monolithic vertex detector upgrade (VTX) to be installed in LS2 in ~2028:
 - More performant and resilient against higher machine backgrounds
 - Defined target spec's in terms of material budget, spatial resolution and integration time window
 - Baseline chip technology TJ180 nm, evolving from TJ-Monopix2:
 OBELIX: First steps towards a Belle II CMOS sensor, submission in 2024
- Realization of prototypes of inner/outer layers ongoing, submitted to the mechanical, thermal and electrical characterization.
- In the finalization phase the CDR of the Belle II Upgrade.

- Low material budget (~50 μm thin sensors):
 0.1% X0 (L1-2), 0.3-0.5% X0 (L3-4), 0.8% X0 (L5)
- Requirements:
 - Radiation levels for L1 (r=1.4 cm)
 - TID: ~100 Mrad
 - NIEL: ~5*10^14 n_eq/cm²
 - Hit-rate up to 120 MHz/cm^2
 - Resolution < 15 um
 - Fast integration time 50-100 ns
 - Operation simplicity and reduced services
- Depleted monolithic active CMOS pixel sensors
 - Chip size: 2x3 cm²
 - Moderate pixel pitch 33 μm²

- 5 straight fully pixelated barrel layers
- Same sensor chip for all layers
- iVTX: Inner 2 layers

see Marcel Vos' talk

- **oVTX**: Outer sections (3 layers), CF structure, water cooled
 - L3@3.9 cm (alternative @6.9 cm)
 - L4@90 cm, L5@13.5 cm
- Power dissipation $\sim 200 \text{ mW/cm}^2$

Outer VTX

Ladder structure design inspired by ALICE ITS2, composed of: CF support structure (truss), cold-plate with pipes for liquid coolant circulation (neg. pressure), Chip and Flex circuit for power&signal glued on top

L5 ladder: 70 cm long

Performed mechanical characterization of the L5 prototype:

- Distortion: measurements of sagitta (~340 um)
- Vibration: 1st resonance frequency ~250 Hz (>>earthquake f.)

Thermal characterization:

- Used Kapton heaters, inlet (T=10°C) and outlet on one side
- Uniform temperature along the ladder Δ T max=3.3 °C

19 March 2024

Thanks for the attention