

Advancement and Innovation for Detectors at Accelerators

Report from WP13 Prospective and Technology-driven Detector R&D

AIDAinnova Annual Meeting, Catania, March 20, 2024

Peter Križan

J. Stefan Institute and University of Ljubljana

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

Projects

• Thin Silicon Sensors for Extreme Fluences

Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant that would withstand a factor of 50 higher fluences than what is presently available.

The Silicon Electron Multiplier, a new approach to charge multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

Development of fine-sampling calorimeters with nanocomposite scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation resistant (~1 MGy) scintillators.

• Wireless Data Transfer for High-Energy Physics Applications

Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-like environment to reduce the material and optimize the read-out.

Project: eXFlu-innova

Thin Silicon Sensors for Extreme Fluences

Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant that would withstand a factor of 50 higher fluences than what is presently available.

The Silicon Electron Multiplier, a new approach to charge multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

Development of fine-sampling calorimeters with nanocomposite scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation resistant (~1 MGy) scintillators.

• Wireless Data Transfer for High-Energy Physics Applications

Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-like environment to reduce the material and optimize the read-out.

The principle: compensation with two dopants

Compensated Gain Layer Design – Split Table

3 different combinations of $p^+ - n^+$ doping: 2 - 1, 3 - 2, 5 - 4

A	Wafer #	Thickness	p+ dose n+ dose		C dose
Active	6	30	2 a	1	
30 μm	7	30	2 b	1	
	8	30	2 b	1	
	9	30	2 c	1	
	10	30	3 a	2	
	11	30	3 b	2	
	12	30	3 b	2	
	13	30	3 b	2	1.0
	14	30	3 c	2	
	15	30	5 a	4	

Mass Spectrometer

Checking the doped sample: Secondary Ion Mass Spectroscopy vs. planned profile

Doping Profile – Compensated LGAD

Depth [a.u.]

Planned: Boron: Phosp 5:4

Depth [a.u.]

- Boron peak is shallower than phosphorus (profiles are not aligned)
- ▷ Boron peak is lower than predicted from simulation

SIMS Profile & I-V – 5–4

ightarrow The simulated I-V reproduces the trend of the measured I-V from W15

I-V from Compensated LGAD – Irradiated

Irradiated from 1E14 to 5E15 n_{eq} /cm²

IR Laser Stimulus on Compensated LGAD

TCT Setup from Particulars Pico-second IR laser at 1064 nm Laser spot diameter ~ 10 μm Cividec Broadband Amplifier (40dB) Oscilloscope LeCroy 640Zi Laser intensity ~ 4 MIPs T = -20°C

Laser stimulus on a LGAD-PiN structures before and after irradiation

$$Gain = \frac{Q_{LGAD}}{\langle Q_{PiN}^{No \ Gain} \rangle}$$

 \rightarrow Good gain behaviour of the compensated LGAD sensors after irradiation

 \rightarrow Even in compensated LGADs, the usage of carbon mitigates the acceptor removal

p-in-n LGAD to determine the donor-removal coeff.

A production batch is needed to study the donor removal coefficient, c_D Donor removal has been studied for doping densities of $10^{12} - 10^{14}$ atoms/cm³ We need to study donor removal in the range of $10^{16} - 10^{18}$ atoms/cm³

 \rightarrow The main goal of the p-in-n LGAD production is to study the c_D evolution and its interplay with Oxygen co-implantation

NB: Oxygen has for donor removal a very similar effect of as carbon for the acceptor removal.

First and second p-in-n LGAD (NLGAD) batches produced by CNM

Project Flow

Deliverables:

- 1. simulation and design of the p-n compensated gain implant (M6) DONE
- 2. production of *p*–*n* compensated sensors (M12) DONE and *n*-doped sensors (M24) –
- 3. identifications of the best parameters to manufacture compensated LGADs (M36) pending

Colour code: fully coloured – planned, translucent – actual.

The eXFlu-innova activities are ongoing

- ▷ The p⁺-n⁺ design has been completed Deliverable 1 "
- ▷ The p^+-n^+ production batch has been completed Part of Deliverable 2 "
- \triangleright The characterisation and testing on the p⁺-n⁺ sensors is almost complete \mathcal{O}
- hightarrow The p-in-n LGAD batch is about to start Σ
- \rightarrow Some delay in the eXFlu-innova activities

An ERC Consolidator Grant awarded to further develop compensated LGAD sensors

Doping Compensation in Thin Silicon Sensors: the pathway to Extreme Radiation Environments CompleX

Project: SiEM

Thin Silicon Sensors for Extreme Fluences

Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant that would withstand a factor of 50 higher fluences than what is presently available.

The Silicon Electron Multiplier, a new approach to charge multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

Development of fine-sampling calorimeters with nanocomposite scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation resistant (~1 MGy) scintillators.

• Wireless Data Transfer for High-Energy Physics Applications

Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-like environment to reduce the material and optimize the read-out.

Silicon Electron Multiplier (SiEM) principle

- The Silicon Electron Multiplier (SiEM) is a novel sensor concept.
- Internal gain and fine pitch --> excellent time and spatial resolution.
- Divided in two regions: 1. conversion and drift layer, 2. amplification layer.
- Gain mechanism --> impact ionization applying a ΔV in embedded electrodes deposited in a trench, surrounding a Si pillar.
- No gain-layer deactivation is expected with radiation damage, expected to withstand fluencies up to 10¹⁶ neq/cm².

PLANNING TOWARDS DEMONSTRATOR

Demonstrator: process based on DRIE - Deep reactive ion etching

FEDERICO DE BENEDETTI - AIDAINNOVA 3RD ANNUAL MEETING

DRIE DEMONSTRATOR (Deep reactive ion etching)

• Demonstrator as a PoC manufactured by CNM.

• Strip with two embedded electrodes design, wire bond pads connect strips in parallel.

• Trenches:

• Laser photolithography, Si trenches etched (DRIE - Deep reactive ion etching).

• Electrode deposition:

• ALD 50 nm HfO₂, metal deposition, ALD 50 nm HfO₂, SiO₂ deposition, electrode 2.

• Challenges:

- The oxide layer can induce stress, limiting the gap between electrodes 1 and 2.
- Etching limited in width depending on the patterning process used:
 - Laser photolithography down to 2 um.
 - Fast prototyping and good flexibility.
 - Require pyramidal profile to achieve best multiplication performance.
 - Electron beam lithography (adjustment needed).

DRIE ITERATIONS

• 1st batch over etched:

• Trench 25 um instead of 8 um.

• 2nd batch improved etching:

- Test B: 9 um, test C: 8.41 um.
- Pillars thinner than nominal 1.7 um, some were broken.
- No pyramidal shape.

• 3rd batch closer to specs:

- Pyramidal shape achieved but rough walls.
- Slightly over etched due to thin photoresist (unexpected).
- Curved profile at the pillar base due to etching.

• Recipes closer to the goal profile:

- May require minor adjustments.
- Some curved profile in the base from etching process.
- Goal is to achieve 2/3/4um on top and 1um on bottom.

V 1 = 1.88

1.798 µm

l 1 = 4.343 µm

AIDAINNOVA 3RD

ANNUAL

ADVANCED TECHNOLOGIES INVESTIGATION - MACETCH

• Study possible use of Metal assisted etching:

- Parallel project between CERN and PSI, based on AdEM 22 (2020) 2000258.
- Very different process constraints (cheap, high aspect ratio, first electrode deposited while etching).
- Fast development.
- Samples manufactured on n on p wafers
- One gain electrode structure with metal in contact with Si (no SiO2).
- Strips and pillar geometries.
- Published <u>NIM A 1060 [2024] 169046</u>

• Testing the structures:

- IV just after production with probe station pn junction conserved.
- Bonding of test structures to a carrier board.
- IV done in the lab using 16 Channel board V1 from backside electrode and multiplication electrode.
- Preparing setup for laser/test beam.

SIEM: SUMMARY AND OUTLOOK

- Electron Multiplier concept on Silicon Radiation allows charge multiplication, not relying on high doping implantation.
- Mechanism depends on geometry only --> not sensitive to acceptor removal.
- Additional geometries under simulation to match CNM production process.
- CNM DRIE demonstrator production is ongoing, the first samples expected in a few months.
- Alternative approaches to the SiEM geometry are being studied using metal assisted etching.
- Lab characterization setup to be prepared and commissioned (laser and 16 channel boards).
- Integration with TimePix4 telescope under study.

Project: NanoCal

• Thin Silicon Sensors for Extreme Fluences

Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant that would withstand a factor of 50 higher fluences than what is presently available.

The Silicon Electron Multiplier, a new approach to charge multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

Development of fine-sampling calorimeters with nanocomposite scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation resistant (~1 MGy) scintillators.

• Wireless Data Transfer for High-Energy Physics Applications

Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-like environment to reduce the material and optimize the read-out.

Nanomaterial composites (NCs)

Semiconductor nanostructures can be used as sensitizers/emitters for ultrafast, robust scintillators:

- Perovskite (ABX₃) or chalcogenide (oxide, sulfide) nanocrystals
- Cast with polymer or glass matrix
- Decay times down to O(100 ps)
- Radiation hard to O(1 MGy)

Despite promise, applications in HEP have received little attention to date

No attempt yet to build a **real calorimeter with NC** scintillator and test it with high-energy beams

Shashlyk design naturally ideal as a test platform:

- Easy to construct a shashlyk calorimeter with very fine sampling
- Primary scintillator and WLS materials required: both can be optimized using NC technology

KOPIO/PANDA design Fine-sampling shashlyk

NanoCal project status April 2023

Schedule:

- Oct 2022: First shashlyk component test at CERN: fibers/tiles/SiPMs
- 2023: Further iterations to improve performance of NC scintillator prototype
- 2024: Construction of full-scale shashlyk modules; performance comparison

2 prototypes with 12 fine sampling layers $1.3X_0$ in depth: MIP deposit = 10 MeV Known formulation for NC scintillator:

- + 0.2% CsPbBr $_3$ in UV-cured PMMA
- 50% of light emitted with τ < 0.5 ns

Conclusion of 2022 test:

NC prototype seems to work but with low light yield and many open questions

New prototypes for summer 2023 tests

Prototypes tested in PS T9, June 2023:

- Conventional scintillator (Protvino), Y-11 fibers
- Conventional scintillator (PVT + BTP 0.02%), Y-11 fibers
- PMMA + CsPbBr₃ 0.2%, O-2 fibers
- PMMA + CsPbBr₃ 0.2%, custom NCA-1 fibers
- PMMA + CsPb(Br,Cl)₃ + coumarin-6, NCA-1 fibers

Electron beam, 1, 2, 4 GeV MIP beam (μ^- or π^-), 10 GeV Cerenkov ID for $e/\mu\pi/p$

For each prototype:

- MIP response, efficiency
- *e*⁻ response
- Time resolution

NanoCal setup and T9 test results

- Time reference detector
- **S1, S2** Trigger scintillator paddles
- **C1, C2** Si strip tracking chambers, 10×10 cm²

Module Module to be tested

Efficiency maps with 10 GeV μ , threshold = $5\sigma_{noise}$

Disappointing result from new nanocomposite: only light is from readout fibers!

T0

New samples for fall 2023 tests

Still many good ideas for the next steps

- Direct synthesis of CsPb(Br,Cl)₃ to preserve surface passivation
- Use of an aromatic matrix material, e.g., PVT as in conventional scintillator
 - First formulations use PMMA: gives no primary scintillation contribution
 - Now have new protocol to use perovskites with thermally polymerized matrix, with or without additional WLS

New samples synthesized and tested in fall 2023:

All samples 90:10 PVT/DBV matrix with 1.5% PTP as primary dye

Protvino B	0.04% POPOP
Bicocca 1	0.04% benzothiophene (BTP)
Bicocca 2	0.04% coumarin-6
Bicocca 3	0.04% BTP + 0.04% coumarin-6
Bicocca 4	1% Yb:CsPbBr3
Bicocca 5	1% Yb:CsPbBr3 + perylene dyad

Light yield tests with new samples

- Reference sample: 1.5% PTP + 0.04% POPOP in PVT ("Protvino")
- Bicocca 4, 5: CsPbBr₃:Yb in PVT ~50% ILY of ref. sample
 Our first nanocomposites with good mip response!
- Bicocca 3: Coumarin-6 in PVT with PTP + BTP

~160% LY of ref. sample!

NanoCal: Outlook

By summer, we should have complete results from spectroscopy, cosmic rays, sources, and Frascati BTF electrons for *all* samples

Better setup for measurements with cosmic rays and beams:

 New laboratories in Frascati and Napoli, new sample holders with better optical coupling, easier sample handling, electronics with reduced noise, new DAQ system for digitizers, addition of Medipix-2 pixel detector to BTF setup for multiplicity counting

The survey will allow us to identify the best candidate(s) for a small prototype to be tested with mips and electrons in CERN PS T9 in September 2024:

 Isolation of contributions from nanocrystals and dyes and a better understanding of how NC scintillators work

Survey now in progress with cosmic rays, sources, and mip and electron beams, with improved measurement setup, to obtain:

- Identification of most promising candidates for prototyping
- Better understanding of how NC scintillators work

Project: WADAPT

• Thin Silicon Sensors for Extreme Fluences

Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant that would withstand a factor of 50 higher fluences than what is presently available.

The Silicon Electron Multiplier, a new approach to charge multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

Development of fine-sampling calorimeters with nanocomposite scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation resistant (~1 MGy) scintillators.

• Wireless Data Transfer for High-Energy Physics Applications

Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-like environment to reduce the material and optimize the read-out.

- Study of components and antennas integration
- Full link demonstrator(s) from 1 tile to 2 and 3 tiles several mock-ups to be tested
- Use and integrate commercially available components
- Study the performance of the system (data rate, bit error rate, modulation schemes, usage of bandwidth, crosstalk in repeater, etc.)

Debit 1 Gbps per layer and is cumulative, thus it will be reaching 3 Gbps at the outer enclosure.

Courtesy of CEA-Letti and STMicroelectronics

SK202 boards (employing ST-60 GHz transceiver chip)

Board outlook:

SK202: radiation power measurements

5 cm distance

Peak value: -28.7 dBm

- Power measurements of the SK202 board to horn antenna harmonic mixer with a 20 GHz spectrum analyser.
- Measurements are done at different distances, i.e., 5 cm, 10 cm, 15 cm and 20 cm

distance	5	10	15	20	cm
received power	-28.7	-31.9	-34	-37.8	dBm

• The SK202 boards don't communicate at distances higher than 5 cm, as the receive power is not enough which is needed for the down-conversion.

Plan now is to integrate an LNA (low noise amplifier) on a new repeater mm-wave board to extend this range to 20 cm.

Two amplifiers:

- 1. Gotmic gANZ0031 C V-band LNA MMIC 57-66 (52 72) GHz
- 2. Hittite HMC-ALH382 LNA 57-65 GHz
- Both to be implemented with stud bumps as well as with wire-bond configurations
- ACB Group CIBEL, France: PCB fabrication; TAI-PRO Engineering, Belgium: amplifier assembly using stud bump; Note, Norrtälje: wire bonding

WADAPT: outlook

- Measurements for newly fabricated boards are to start end of March.
- Make a prototype where the LNA is integrated between the 60 GHz transceiver chip and the antenna/antenna array.

WP13 Prospective and Technology -driven Detector R&D: summary

Summary and outlook

- The four projects are well underway.
- They have seen a lot of progress.
- All of them have also encountered problems, but have good ideas on how to mitigate them
- Planning to wrap up the projects in the final year.
- All of them would find an extension of 6 months very useful.

