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• Thin Silicon Sensors for Extreme Fluences
Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant 
that would withstand a factor of 50 higher fluences than what is presently available.  

• The Silicon Electron Multiplier, a new approach to charge 
multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

• Development of fine-sampling calorimeters with nanocomposite 
scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials 
based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation 
resistant (~1 MGy) scintillators. 

• Wireless Data Transfer for High-Energy Physics Applications
Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-
like environment to reduce the material and optimize the read-out.
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Use the interplay between acceptor 
and donor removal to keep a constant 

gain layer active doping density

Many unknowns:
▻ donor removal coefficient, 

from n+(Φ) = n+(0)⋅e-cDΦ

▻ interplay between donor and acceptor
removal (cD vs cA)

▻ effects of substrate impurities on the
removal coefficients

R. White for eXFlu-
innova
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Doping Profile – Standard LGAD
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Irradiation
Φ = 1×1016/cm2
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Doping Profile – Compensated LGAD

D
op

in
g 

D
en

si
ty

 [a
.u

.]

Depth [a.u.]

Compensated LGAD

Effective 
doping

–– Boron × 5  Φ = 0
–– Phosp × 4  Φ = 0
–– Comp        Φ = 0

–– Boron × 5  Φ = 1E16
–– Phosp × 4  Φ = 1E16
–– Comp        Φ = 1E16

- - Comp         Φ = 0

–– Boron × 1  Φ = 1E16

- - Boron × 1  Φ = 0

–– Boron × 1  Φ = 0

Effective 
doping

The principle: 
compensation with two
dopants



Compensated Gain Layer 
Design – Split Table

R. White for eXFlu-
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3 different combinations of p+ – n+ doping: 2 – 1, 3 – 2, 5 – 4 

[ a < b < c ]
Active

thickness
30 µm



Checking the doped sample:
Secondary Ion Mass 
Spectroscopy vs. planned profile 
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▻ Boron peak is shallower than phosphorus (profiles are not aligned)
▻ Boron peak is lower than predicted from simulation

Co
nc

en
tr

at
io

n 
[a

.u
.]

Depth [a.u.]

D
op

in
g 

D
en

si
ty

 [a
.u

.]

Depth [a.u.]

Doping Profile – Compensated LGAD

Planned: Boron:Phosp 5:4



SIMS Profile & I-V – 5–4
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→ The simulated I-V reproduces the trend of the measured I-V from W15

Simulated I-V from SIMS Profiles

T = 293 K

Doping Profiles
from Process Simulation

Doping Profiles
from SIMS
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I-V from Compensated 
LGAD – Irradiated
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[Φ] = neq/cm2

TF=0 = + 20ºC
TIRR = - 20ºC

W6
2 – 1

W13
3 – 2 + C

W12
3 – 2

W15
5 – 4

Irradiated  from 1E14 to 5E15 neq/cm2



IR Laser Stimulus on 
Compensated LGAD
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TCT Setup from Particulars 
Pico-second IR laser at 1064 nm
Laser spot diameter ~ 10 µm
Cividec Broadband Amplifier (40dB)
Oscilloscope LeCroy 640Zi
Laser intensity ~ 4 MIPs 
T = -20ºC

Laser stimulus on a 
LGAD-PiN structures 

before and after 
irradiation

𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆 =
𝐐𝐐𝐋𝐋𝐆𝐆𝐋𝐋𝐋𝐋

< 𝐐𝐐𝐏𝐏𝐆𝐆𝐏𝐏𝐏𝐏𝐍𝐍 𝐆𝐆𝐆𝐆𝐆𝐆𝐆𝐆>

→ Good gain behaviour of the compensated LGAD sensors after irradiation
→ Even in compensated LGADs, the usage of carbon mitigates the acceptor removal



p-in-n LGAD to determine 
the donor-removal coeff.

R. White for eXFlu-
innova

eXFlu-innova @ AIDAinnova 3rd Annual Meeting

A production batch is needed to study the donor removal coefficient, cD

Donor removal has been studied for doping densities of 1012 – 1014 atoms/cm3

We need to study donor removal in the range of 1016 – 1018 atoms/cm3

→ The main goal of the p-in-n LGAD production is to study the cD evolution
and its interplay with Oxygen co-implantation

NB: Oxygen has for donor removal a very similar effect of
as carbon for the acceptor removal.

First and second p-in-n LGAD (NLGAD) batches produced by CNM

p-in-n LGAD

p++

n+

n

n++
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Project Flow

R. White for eXFlu-
innova

eXFlu-innova @ AIDAinnova 3rd Annual Meeting

Deliverables:
1. simulation and design of the p–n compensated gain implant (M6) – DONE 
2. production of p–n compensated sensors (M12) – DONE and n-doped sensors (M24) –
3. identifications of the best parameters to manufacture compensated LGADs (M36) – pending

Colour code: fully coloured – planned, translucent – actual.
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Summary on the eXFlu-innova

R. White for eXFlu-
innova

eXFlu-innova @ AIDAinnova 3rd Annual Meeting

The eXFlu-innova activities are ongoing

▻ The p+–n+ design has been completed  – Deliverable 1  🎯🎯

▻ The p+–n+ production batch has been completed – Part of Deliverable 2  🎯🎯

▻ The characterisation and testing on the p+–n+ sensors is almost complete  🎯🎯

▻ The p-in-n LGAD batch is about to start  ⏳

→ Some delay in the eXFlu-innova activities
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An ERC Consolidator Grant awarded to further develop compensated LGAD sensors
Doping Compensation in Thin Silicon Sensors: 

the pathway to Extreme Radiation Environments
CompleX



• Thin Silicon Sensors for Extreme Fluences
Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant 
that would withstand a factor of 50 higher fluences than what is presently available.  

• The Silicon Electron Multiplier, a new approach to charge 
multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

• Development of fine-sampling calorimeters with nanocomposite 
scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials 
based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation 
resistant (~1 MGy) scintillators. 

• Wireless Data Transfer for High-Energy Physics Applications
Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-
like environment to reduce the material and optimize the read-out.
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Silicon Electron Multiplier 
(SiEM) principle

• The Silicon Electron Multiplier (SiEM) is a novel sensor concept.
• Internal gain and fine pitch --> excellent time and spatial resolution.
• Divided in two regions: 1. conversion and drift layer, 2. amplification

layer.
• Gain mechanism --> impact ionization applying a ΔV in 

embedded electrodes deposited in a trench,  surrounding a Si
pillar.

• No gain-layer deactivation is expected with radiation damage, 
expected to withstand fluencies up to 1016 neq/cm2.

F E D E R I C O DE B E N E D E T T I - A I D A I N N O V A 3 R D A N N U A L M E E T I N G



PLANNING TOWARDS
DEMONSTRATOR

2022 2023 2024 2025

Process

Matching

Test structure

Device Simulations

Device

Demonstrator

Investigation of alternative process, material etc...

Roadmap document

[1] Definition of design rules:

[2] Demonstrator design:

[3] Demonstrator production:

[4] Demonstrator characterization:

[5] Advanced technologies
investigation:
[6] Roadmap document:

Demonstrator

F E D E R I C O DE B E N E D E T T I - A I D A I N N O V A 3 R D A N N U A L M E E T I N G

Demonstrator: process based on DRIE - Deep reactive ion etching



DRIE DEMONSTRATOR
(Deep reactive ion etching )

2/3/4 um

• Demonstrator as a PoC manufactured by CNM.
• Strip with two embedded electrodes design, 

wire bond pads connect strips in parallel.

• Trenches:
• Laser photolithography, Si trenches etched (DRIE - Deep 

reactive ion etching ).

• Electrode deposition:
• ALD 50 nm HfO2, metal deposition, ALD 50 nm HfO2, 

SiO2 deposition, electrode 2.

• Challenges:
• The oxide layer can induce stress, limiting the gap 

between electrodes 1 and 2.

• Etching limited in width depending on the patterning 
process used:

• Laser photolithography down to 2 um.

• Fast prototyping and good flexibility.
• Require pyramidal profile to achieve best 

multiplication  performance.

• Electron beam lithography (adjustment needed).

F E D E R I C O DE B E N E D E T T I - A I D A I N N O V A 3 R D A N N U A L M E E T I N G

Si

SiO2

Deep electrodeShallow electrode

Readout electrode



DRIE ITERATIONS

• 1st batch over etched:
• Trench 25 um instead of 8 um.

• 2nd batch improved etching:
• Test B: 9 um, test C: 8.41 um.

• Pillars thinner than nominal 1.7 um, some 
were broken.

• No pyramidal shape.

• 3rd batch closer to specs:
• Pyramidal shape achieved but rough walls.

• Slightly over etched due to thin photoresist
(unexpected).

• Curved profile at the pillar base due to etching.

• Recipes closer to the goal profile:
• May require minor adjustments.

• Some curved profile in the base from etching
process.

• Goal is to achieve 2/3/4um on top and 1um on
bottom.

3rd batch

F E D E R I C O DE B E N E D E T T I - A I D A I N N O V A 3 R D A N N U A L M E E T I N G



ADVANCED TECHNOLOGIES 
INVESTIGATION - MACETCH

• Study possible use of Metal assisted etching:
• Parallel project between CERN and PSI, based on 

AdEM 22 (2020)  2000258.

• Very different process constraints (cheap, high 
aspect ratio, first  electrode deposited while etching).

• Fast development.

• Samples manufactured on n on p wafers

• One gain electrode structure with metal in contact with Si 
(no SiO2).

• Strips and pillar geometries.

• Published NIM A 1060 [2024] 169046

• Testing the structures:
• IV just after production with probe station pn junction

conserved.

• Bonding of test structures to a carrier board.

• IV done in the lab using 16 Channel board V1 from 
backside  electrode and multiplication electrode.

• Preparing setup for laser/test beam.



SiEM: SUMMARY 
AND OUTLOOK

• Electron Multiplier concept on Silicon Radiation allows charge multiplication, not 
relying on high doping implantation.

• Mechanism depends on geometry only --> not sensitive to acceptor removal.
• Additional geometries under simulation to match CNM production process.
• CNM DRIE demonstrator production is ongoing, the first samples expected in a 

few months.
• Alternative approaches to the SiEM geometry are being studied using metal 

assisted etching.
• Lab characterization setup to be prepared and commissioned (laser and 16 

channel boards).
• Integration with TimePix4 telescope under study.



• Thin Silicon Sensors for Extreme Fluences
Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant 
that would withstand a factor of 50 higher fluences than what is presently available.  

• The Silicon Electron Multiplier, a new approach to charge 
multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

• Development of fine-sampling calorimeters with nanocomposite 
scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials 
based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation 
resistant (~1 MGy) scintillators. 

• Wireless Data Transfer for High-Energy Physics Applications
Develop mm-wave-based wireless communication as an alternative to optical and wired links in a HEP-
like environment to reduce the material and optimize the read-out.
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Nanomaterial 
composites (NCs)

21

Semiconductor nanostructures can be used as 
sensitizers/emitters for ultrafast, robust 
scintillators:
• Perovskite (ABX3) or chalcogenide (oxide, 

sulfide) nanocrystals
• Cast with polymer or glass matrix
• Decay times down to O(100 ps)
• Radiation hard to O(1 MGy)

Despite promise, applications in HEP have received little 
attention to date

No attempt yet to build a real calorimeter with NC 
scintillator and test it with high-energy beams

Shashlyk design naturally ideal as a test platform:
• Easy to construct a shashlyk calorimeter with very fine 

sampling
• Primary scintillator and WLS materials required: both can 

be optimized using NC technology

KOPIO/PANDA design
Fine-sampling shashlyk



NanoCal project status April 2023

22

2 prototypes with 12 fine sampling layers
1.3X0 in depth: MIP deposit = 10 MeV
Known formulation for NC scintillator:

• 0.2% CsPbBr3 in UV-cured PMMA
• 50% of light emitted with τ < 0.5 ns

Schedule:
• Oct 2022: First shashlyk component test at CERN: fibers/tiles/SiPMs
• 2023: Further iterations to improve performance of NC scintillator prototype
• 2024: Construction of full-scale shashlyk modules; performance comparison

Conventional NanoCal

Oct 2022 test: SPS H2 beamline
e− and π+ with beam tracking

x [cm]
y

[c
m

]

Conclusion of 2022 test:
NC prototype seems to work but with low light 
yield and many open questions 



New prototypes for 
summer 2023 tests

Prototypes tested in    
PS T9, June 2023:
• Conventional scintillator 

(Protvino), Y-11 fibers

• Conventional scintillator 
(PVT + BTP 0.02%), Y-11 
fibers

• PMMA + CsPbBr3 0.2%, 
O-2 fibers

• PMMA + CsPbBr3 0.2%, 
custom NCA-1 fibers

• PMMA + CsPb(Br,Cl)3 + 
coumarin-6, NCA-1 fibers 

23



NanoCal setup and T9 test 
results

24

T0 Time reference detector
S1, S2 Trigger scintillator paddles
C1, C2 Si strip tracking chambers, 10×10 cm2

Module Module to be testedFor each prototype:
• MIP response, efficiency
• e− response
• Time resolution

Electron beam, 1, 2, 4 GeV
MIP beam (μ− or π−), 10 GeV
Cerenkov ID for e/μπ/p

Efficiency maps with 10 GeV μ, threshold = 5σnoise
Disappointing result from new nanocomposite: only light is from readout fibers! 

Protvino CsPb(Br,Cl)3 + WLS



New samples for 
fall 2023 tests

Still many good ideas for the next steps
• Direct synthesis of CsPb(Br,Cl)3 to preserve surface passivation
• Use of an aromatic matrix material, e.g., PVT as in conventional scintillator

• First formulations use PMMA: gives no primary scintillation contribution
• Now have new protocol to use perovskites with thermally polymerized matrix, with or 

without additional WLS

New samples synthesized and tested in fall 2023:

Protvino B
Bic 4

Bic 5

Bic 1

Bic 2

Bic 3

Protvino B 0.04% POPOP

Bicocca 1 0.04% benzothiophene (BTP)

Bicocca 2 0.04% coumarin-6

Bicocca 3 0.04% BTP + 0.04% coumarin-6

Bicocca 4 1% Yb:CsPbBr3 

Bicocca 5 1% Yb:CsPbBr3 + perylene dyad

All samples 90:10 PVT/DBV matrix with 
1.5% PTP as primary dye 



Light yield tests with 
new samples

• Reference sample:
1.5% PTP + 0.04% POPOP in 
PVT (“Protvino”)

• Bicocca 4, 5: CsPbBr3:Yb in PVT 
~50% lLY of ref. sample
Our first nanocomposites with 
good mip response!

• Bicocca 3: Coumarin-6 in PVT with 
PTP + BTP 

~160% LY of ref. sample!

Frascati BTF, Nov 2023
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Normalized charge spectra
Single 450 MeV e− events
Frascati BTF, Nov 2023 

Charge [pC]
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Tests with mip and e− beams:
CERN T9
Oct 2023

6, 10 GeV electrons
10, 15 GeV hadrons/mips

Frascati BTF
Nov 2023

450 MeV electrons
Similar to mips for small samples



NanoCal: Outlook

By summer, we should have complete results from spectroscopy, cosmic rays, 
sources, and Frascati BTF electrons for all samples

Better setup for measurements with cosmic rays and beams:
• New laboratories in Frascati and Napoli, new sample holders with better optical 

coupling, easier sample handling, electronics with reduced noise, new DAQ system 
for digitizers, addition of Medipix-2 pixel detector to BTF setup for multiplicity counting

The survey will allow us to identify the best candidate(s) for a small prototype to be 
tested with mips and electrons in CERN PS T9 in September 2024:

• Isolation of contributions from nanocrystals and dyes and a better understanding of 
how NC scintillators work

Survey now in progress with cosmic rays, sources, and mip and electron beams, 
with improved measurement setup, to obtain:

• Identification of most promising candidates for prototyping
• Better understanding of how NC scintillators work



• Thin Silicon Sensors for Extreme Fluences
Make Si sensors radiation tolerant by using a thin bulk, internal amplification and using a gain implant 
that would withstand a factor of 50 higher fluences than what is presently available.  

• The Silicon Electron Multiplier, a new approach to charge 
multiplication in solid state detectors

Make Si sensors radiation tolerant by a novel biasing method – electrodes embedded in silicon.

• Development of fine-sampling calorimeters with nanocomposite 
scintillating materials

Develop a new generation of fine-sampling calorimeters that use innovative scintillating materials 
based on perovskite nanocrystals dispersed in a plastic matrix to form fast (~100ps) and radiation 
resistant (~1 MGy) scintillators. 

• Wireless Data Transfer for High-Energy Physics Applications
Develop mm-wave-based wireless communication as an alternative to optical and wired links in a 
HEP-like environment to reduce the material and optimize the read-out.
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Project: WADAPT



Wireless Data Transfer for
HEP Applications

Laye r A

Layer C

Layer B

~10 cm

• Study of components and antennas integration
• Full link demonstrator(s) from 1 tile to 2 and 3 tiles – several mock-ups to be tested
• Use and integrate commercially available components
• Study the performance of the system (data rate, bit error rate, modulation 

schemes, usage of bandwidth, crosstalk in repeater, etc.)
O uter enclosure

Debit 1 Gbps per layer and is cumulative, thus
it will be reaching 3 Gbps at the outer enclosure.

Courtesy of CEA-Letti and
STMicroelectronics



SK202 boards (employing ST-60 
GHz transceiver chip)



• Power measurements of the SK202 board to horn antenna harmonic mixer with a
20 GHz spectrum analyser.

• Measurements are done at different distances, i.e., 5 cm, 10 cm, 15 cm and 20 cm

SK202: radiation power 
measurements

distance 5 10 15 20 cm
received power -28.7 -31.9 -34 -37.8 dBm



• The SK202 boards don’t communicate at distances
higher than 5 cm, as the receive power is not 
enough which is needed for the down-conversion.

Plan now is to integrate an LNA (low noise amplifier) on 
a new repeater mm-wave board to extend this range to 
20 cm.

Reception Re-
transmission

LNA 

1. Gotmic gANZ0031 C V-band LNA MMIC 57-66 (52 - 72) GHz
2. Hittite HMC-ALH382 LNA 57-65 GHz

• Both to be implemented with stud bumps as well as with wire-bond configurations

• ACB Group CIBEL, France: PCB fabrication; TAI-PRO Engineering, Belgium: amplifier 
assembly using stud bump; Note, Norrtälje: wire bonding

Two amplifiers:



WADAPT: outlook

• Measurements for newly fabricated boards are to start end of March.

• Make a prototype where the LNA is integrated between the 60 GHz transceiver 
chip and the antenna/antenna array.

ST 60 
GHz chip

LNA 



Summary and outlook

• The four projects are well underway.
• They have seen a lot of progress.
• All of them have also encountered problems, but have good ideas 

on how to mitigate them
• Planning to wrap up the projects in the final year.
• All of them would find an extension of 6 months very useful. 
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