AIDAinnova 12.3 FastSim Activities at DESY

Annual Meeting 2024, Canatia

Aanatolii Korol^{*} *anatolii.korol@desy.de

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

HELMHOLTZ

Calo-ML Working Group at DESY

- goal: study the suitability of using generative networks for the simulation of calorimeter showers in highly granular calorimeters with high fidelity
 - ideally such that they can replace G4 in full simulation for physics analyses for Future Higgs Factories
 - work carried out in context of the ILD detector concept for the ILC and with the CALICE collaboration
- generative ML working group:
 - part of FTX-SFT at DESY
 - 1 post doc, 2 PhD students
- joined with UHH (G.Kasieczka) in Quantum Universe cluster of excellence
- AIDAinnova, ACCLAIM (Helmholtz Innovation Pool), CDCS,...

Energy and Angular Conditioning

- Photons incident at fixed position
- Extend BIB-AE architecture
- Vary incident energy and polar angle
 - Large training sample 500k showers
 - Uniform in [10-100 GeV, 30-90 deg]
 - Test/validation samples at dedicated energies and angles

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, et al., 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

Energy and Angular Conditioning, Performance After Reconstruction

Adding Another Angle

- Need to condition on energy, theta and phi for full application
- Extending phase space can be challenging

DESY. | AIDAinnova Annual Meeting 18.03.2024 | Anatolii Korol

Two-Angle Conditioned BIB-AE

models: DDFastShowerML

· Development ongoing

DD4hep

•

https://gitlab.desy.de/ilcsoft/ddfastshowerml

 Use fast sim hooks in DDG4/Geant4 Use realistic, detailed detector models · Currently only supports CPU

- used BIB-AE for fast simulation of photons from tau-pairs in ILD w/ DDML
- run full reconstruction (w/ PandoraPFA) of these events and compare G4 and BIB-AE

20 GeV photon in ILD generated with a BIB-AE Integration into the Full Simulation Chain Prototype library for running ML-based fast sim Necessary update to Geant4 version 11.1! Trigger Model Fast Sim trigger Model-specific implementation of ML e.g. particle type, energy architecture · Aim to have an easy to use library which can be geometry adapted for all types of ML architectures in Inference Geometry Essential step to be able to study performance · Concrete inference in C++ Concrete placement in detector ONNX, LibTorch etc... · Endcap, barrel etc.

P.McKeown

of model with full physics benchmarks

- reasonably good description of pi0s from tau decays
- differences between BIB-AE of similar order as G4-10.4 (used for training) and G4-11.1 (used for reco)

Point Cloud Representation of the EM Showers

Jy [MeV]

GEANT4 Steps

Photon Energy: 90 [GeV] Event: 4

Time step: 0.98246 [ns]

A way to overcome potential issues from irregular (realistic) cell geometry is use of much higher granularity/resolution

- All G4 interactions, ultimate resolution
- Detached from detector layer geometry

DESY. | AIDAinnova Annual Meeting 18.03.2024 | Anatolii Korol

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, et al. 2023, <u>arXiv:2305.04847</u>

CaloClouds, Model Overview

(a) Training at random time step t

(b) Sampling with reverse diffusion through all time steps T

• GANs and VAEs convert noise from some simple distribution to a data sample

• DMs learn to gradually denoise data starting from noise

Point Cloud + Diffusion Model Results

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, et al. 2023, <u>arXiv:2305.04847</u>

CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, et al. 2023, <u>arXiv:2309.05704</u>

CaloClouds II, Model Overview

Modified version of CaloClouds + Consistency Distillation \rightarrow significantly reduced inference time

Point Cloud + Diffusion Model Results

CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, et al. 2023, <u>arXiv:2309.05704</u>

Point Cloud + Diffusion Model Results

CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, et al. 2023, <u>arXiv:2309.05704</u>

Hardware	Simulator	NFE	Batch Size	Time / Shower [ms]	Speed-up
CPU	Geant4		3	3914.80 ± 74.09	×1
	CALOCLOUDS	100	1	3146.71 ± 31.66	$\times 1.2$
	CALOCLOUDS II	25	1	651.68 ± 4.21	$\times 6.0$
	CaloClouds II (CM)	1	1	84.35 ± 0.22	×46
GPU	CALOCLOUDS	100	64	24.91 ± 0.72	$\times 157$
	CALOCLOUDS II	25	64	6.12 ± 0.13	$\times 640$
	CaloClouds II (CM)	1	64	2.09 ± 0.13	$\times 1873$

Work in Progress, Adding Two-Angle Conditioning

 $50 \,\, {\rm GeV}$

50 GeV

Summary

BiB-AE Family

CaloClouds Family

Flows Family

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, Buhmann et al., <u>arXiv:2005.05334</u>, Comput Softw Big Sci 5, 13 (2021) New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, et al., 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

Hadrons, Better, Faster, Stronger Buhmann, et al., **arXiv:2112.09709**, MLST 3 2, 025014 (2022) High Fidelity / High speed / Challenging to Scale / Challenging to Integrate

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, et al. 2023, <u>arXiv:2305.04847</u> **CaloClouds II: Ultra-Fast Geometry-Independent Highly-Granular Calorimeter Simulation**, Buhmann, et al. 2023, <u>arXiv:2309.05704</u>

Fair Fidelity / High speed / Easy to Scale / Layer Geometry Independent / Straightforward to Integrate

Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows, Buss et al., coming soon on arXiv...

L2LFlows: Generating High-Fidelity 3D Calorimeter Images, Diefenbacher et al., <u>arXiv:2302.11594</u>

Ultimate Fidelity / Fair speed / Challenging to Scale / Layer Geometry Independent / Straightforward to Integrate

BACKUP SLIDES

Image Representation of the EM Showers

Problems with Image Representation of the EM Showers ILD Detector, ECAL Layers Structure

Problems with Image Representation of the EM Showers

ILD Detector, ECAL Layers Structure, Staggering Effect

Models have to learn not only EM shower properties, but also geometry "artifacts", like staggering effect

Point Cloud Representation of the EM Showers Data Preprocessing

Number of points reduced to $\sim 6k$ per shower, high enough resolution to move the shower in different place without harming physical properties of the shower

New Angles Energy Conditioning Performance

• Sim level visible energy

- **Rec** level calibrated energy
 - After full PandoraPFA reco

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, et al. 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

New Angles Angular Conditioning Performance

0.35

0.30

0.25

0.15

0.10

0.05

0.00

0.35

0.30

0.25

0.15

0.10

0.05

0.00

normalized 0.20

normalized 0.20 40 degree 20 GeV Photons

- Geant4

-- BIB-AE PP

Sim Level

60 degree

- 85 degree

60 degree

85 degree

Sim level angle reconstruction

Ο

- **Rec** level angle reconstruction
 - After full reconstruction with PandoraPFA

0.5

0.4

0.3

0.2

normalized

60 degree

85 degree

New Angles on Fast Calorimeter Shower Simulation, Diefenbacher, et al. 2023 MLST in press DOI 10.1088/2632-2153/acefa9, arXiv: 2303.18150

Shower Flow Results

Shower Flow Results

PointWise Net

Results, Position of the Center of Gravity

Results, Visible Energy and the Number of Hits

Point Cloud + Diffusion Model Results

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, Buhmann, et al. 2023, <u>arXiv:2305.04847</u>

Per-cell energy distribution for the 50 GeV validation (left) data set, created at the same position as the training data set and for a 50 GeV test (right) data set simulated at a different position with the generated point cloud translated to this position

Point Cloud Representation of the EM Showers Effects of the Pre-Clustering

Point Cloud Representation of the EM Showers

Effects of the Pre-Clustering

