update from Bari, courtesy of Gabriella Catanesi

Bari Lab update: April 2024 (from the design to the construction phase)

- Construction of the gas vessel (with flanges and optical window) ongoing (will be installed in the lab July 2024)
- Construction of the table and supports for the vessel also ongoing (will be ready in June 2024)
- Electronic Procurement completed
- Development of readout software started
- Field-cage design in preparation => Construction second half 2024)
- Test of the gas system ongoing
- Goal : prototype ready by end of the year

Identification of a Gas Mixture For Neutrino Physics in an Optical TPC

P. Amedo¹, J. Baldonedo², C. Benítez³, E. Casarejos², J. Collazo², D. J. Fernández¹, R. Hafeji^{1,3}, <u>D. González-Díaz¹</u>, S. Leardini¹, J. Llerena¹, J. Martín-Albo³, D. Rodas Rodríguez¹, A. Saá-Hernández¹, A. Segade², M. Tuzi³ and the ARIADNE team⁴

1. IGFAE (Santiago); 2. Univ. Vigo; 3. IFIC (Valencia); 4. Univ. Liverpool

*ULTIMATE: Unleashing Light Timing In a Massive Argon TPC Experiment (Spanish Ministry -FPN)

Main context: DUNE's ND-GAr (planned for Phase-II)

LAr vs GAr

ND-GAr with OTPC readout (original motivation -> provide T_0 !)

and essential when no charged particle reaches ECAL

OTPC readout (main topics)

Enabling asset I (SiPM ganging)

Hamamatsu S14161-6050HS

- Fit into 2.5cm x 2.5cm footprint.
- Time sampling \lesssim 7ns.

Hamamatsu S14161-6050HS

passive ganging

S1(T₀): ganging (board V.1)

- Risetime: 10-15ns, width: 50-100ns
- S/N>5
- Power consumption: 100mW
- Fit into 2.5cm x 2.5cm footprint.
- Time sampling \lesssim 7ns.

results at -25deg

V.2 under production!

Enabling assets II (active cryostat)

* Measurements at the window center

Active cryostat (3D)

problem of heat-dissipation at ITO-electrode edges! (solved in new design)

time

working towards TPC-integrated design

goal: avoid T-gradients in the TPC!

Enabling assets III (impact of Teflon reflector)

Impact of Teflon reflector

a Teflon reflector involves a lot of plastic facing the active region (can it be efficiently removed?)

D

'Bonus' asset (optical tracking)

OTPC readout (main topics)

Optical tracking (demonstration at 1bar)

P. Amedo et al., arXiv:2312.0503

Status of high-pressure technology demonstrator (Gaseous Argon $-T_{0,}$ GAT0)

NDGAr-T₀ final demonstrator (under design)

Beamtime foreseen for spring-summer 2025

intermediate goal: 2D track readout + PMTs, with cosmics and alphas at 5-10bar

Assembly

active region: ~15 cm height, 15 cm diameter First S1 results

cathode

S1 visible in all PMs! (more than 4 phe/5MeV, without detailed analysis)

Appendix

The path towards gas...

- Ionization density is about x 50 less in gas. Requires additional multiplication!.
- Diffusion is at least x10 larger than in liquid. Requires using molecular additives!.
- Conventional TPC additives eliminate scintillation ('quenching')!.

(just an example of ongoing activities, 3D simulations in progress)

P. Amedo³, D. González-Díaz³, A. Lowe¹, K. Majumdar¹, K. Mavrokoridis^{*1}, M. Nessi¹², B. Philippou¹, F. Pietropaolo², F. Resnati², A. Roberts¹, Á. Saá Hernández³, C. Touramanis¹ and J. Vann¹

 ¹ University of Liverpool, Department of Physics, Oliver Lodge Bld, Liverpool, L69 72E, UK
² European Organization for Particle Physics (CERN), Geneva, Switzerland
³ Instituto Galego de Física de Altas Enerzías (IGFAE) Ruía de Xaquím Díaz de Rábago, s/n, Campus Vida, 15782 Santiago de Compostela, Spain

CERN LOI: https://cds.cern.ch/record/2739360 https://doi.org/10.48550/arXiv.2301.02530 SPACECOM VF50095M

X-Arapucas

TPB WLS

Breakthrough in LAr TPCs!

DUAL MCP

TPX3Cam

Raw data is natively 3D. Just need to convert ToA to z position using known drift velocity in the TPC and (x,y) pixel number to mm using the know field of view of the lens.

(71

Huge readout rates are possible (80MHits/s)

Event nº 3 5500 Channel 0 Relies on Timepix sensor **S**1 5000 Comparatively low cost 4500 transit to EL region Same readout is possible for 4000 dual-phase and gas TPCs **S**2 3500 3000 X-Arapucas 2500

10000

20000

50000

40000

TimePix cameras

3D optical imaging!! (a unique feature of ARIADNE)

 $\sim 1m^2$ field-of-view

2m² glass GEMs

 $1 \times 1 m^2$ $\rightarrow \Delta_x = 4 mm$

 $0.5 \times 0.5 \text{m}^2 \rightarrow \Delta_x = 2 \text{mm}$

analysis ongoing!

(80 TimePix cameras in ND-GAr)

TPX3Cams Cost Estimates for a Near Detector

Table: As an example, demonstration figures for use of TimePix within a Dune Near Detector - 16m², 4m x 4m

Camera type	Sen. Size (pixels)	Cameras to cover 1m ²	Resolution (mm/pix)	Total cameras (to cover 16m ²)	Total cost (assuming €15k /camera*)
TPX3	256x256	9	1.3 (~ARIADNE)	144	2.1M
TPX3	256x256	4	2	64	0.96M
TPX3	256x256	1	4 (~ARIADNE ⁺)	16	240k
TPX4	512x448	4	1	64	0.96M
TPX4	512x448	1	2	16	240k
TPX4	512x448	0.66 (1.5m/cam)	3	10	150k

* Cost for a moderate TPX camera production number, therefore higher price than a Far Detector. Intensifiers and optics will double total cost

TPX3 -> TPX4

			Timepix3 (2013)	Timepix4 (2019)		
Technology			130nm – 8 metal	65nm – 10 metal		
Pixel Size			55 x 55 μm	55 x 55 μm		
Pixel arrangement			3-side buttable 256 x 256	4-side buttable 512 x 448 3.5x		
Sensitive area			1.98 cm ²	6.94 cm ²		
Readout Modes	Data driven (Tracking)	Mode	TOT and TOA			
		Event Packet	48-bit	64-bit 33%]	
		Max rate	0.43x10 ⁶ hits/mm ² /s	3.58x10 ⁶ hits/mm ² /s		
		Max Pix rate	1.3 KHz/pixel	10.8 KHz/pixel		
	Frame based (Imaging)	Mode	PC (10-bit) and iTOT (14-bit)	CRW: PC (8 or 16-bit)		
		Frame	Zero-suppressed (with pixel addr)	Full Frame (without pixel addr)		
		Max count rate	~0.82 x 10 ⁹ hits/mm²/s	~5 x 10 ⁹ hits/mm ² /s 6x	J	
TOT energy resolution			< 2KeV	< 1Kev 2x]	
Time resolution			1.56ns	195.3125ps 8x		
Readout bandwidth			≤5.12Gb (8x SLVS@640 Mbps)	≤163.84 Gbps (16x @10.24 Gbps)		
Target global minimum threshold			<500 e⁻	<500 e⁻		

Figure 6. χ^2 vs. amplitude plot for 5 MeV deposits at around mid-chamber, for a Teflon-lined TPC. Different temperatures of the photosensor plane are considered in the reconstruction of 'empty' (N) and 'signal' (S + N) events.

ALICE focuses on centroid reconstruction (space resolution) above all, and sacrifices space sampling. This is convenient for collider physics, otherwise TPCs would have been hardly viable until recently.

ND-GAr needs both: good space resolution for momentum reconstruction of energetic particles, and good space sampling for reconstructing the topological details of the event.

Neutrino world vs collider world (round 1: space resolution and space sampling)

? == is this what we really want/need?

primary scintillation yields and time constants

0.7-4.5cm

Enabling asset 6: development of structures capable of high optical gain, compatible with S1 (just started)

Several multiplication structures (some of them purposely designed for optical readout) have been procured

