

AIDAinnova-WP7.3.2 Industrial engineering of high rate µ-RWELL

Matteo Giovannetti [LNF-INFN]

on behalf of LNF-INFN (leading group) Bologna-Ferrara INFN teams R. De Oliveira – CERN-EP-DT-MPT Workshop R. Pinamonti, M. Pinamonti – ELTOS S.p.A.

NFN AIDAinnova 3nd annual meeting, Catania, March 18th-21th 2024

12-101 710

16-40 25-

17-49 19.

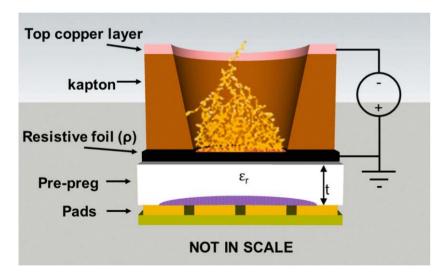
WP7.3.2: Task objectives

Future HEP experiments (LHC upgrades, FCC-ee ...) require the development of particle **detection technologies easily engineered** and compatible with **industrial-scale** production.

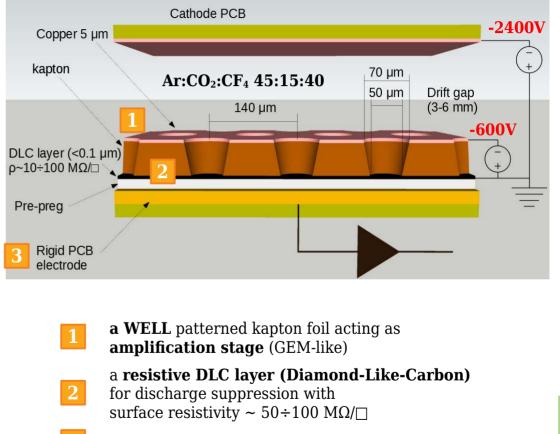
The *µ*-RWELL, a resistive MPGD based on sequential build-up technology, effectively meets these requirements.

DELIVERABLE - December 2023^[*]

 D7.3: µ-RWELL prototypes co-produced by industry under the guidance and supervision of the research team. <u>Discussed on 7/12/23 & report submitted</u>


MILESTONE - June/July 2024^[*]

• **MS28:** build a 0.3×0.3 m² prototype and the readout plane, with the new structure


^[*] Postponed both by 3 months due the production time required by the final construction steps

The µ-RWELL detector (reminder)

The μ -RWELL is a Micro Pattern Gaseous Detector (MPGD) composed of only two elements: the μ -RWELL_PCB and the cathode. **The core is the \mu-RWELL_PCB**, realized by coupling three different elements:

Applying a suitable voltage between the **top Culayer and the DLC** the WELL acts as a **multiplication channel for the ionization** produced in the conversion/drift gas gap.

a standard readout PCB

WP7.3.2: Operative Meetings

 $\mathbf{21^{st}}$ Sept. $\mathbf{2021}$ - joint INFN-ELTOS-CERN meeting

• standardizing manufacturing procedures of μ-RWELL layout

 $1^{\mbox{st-}}3^{\mbox{rd}}$ Dec. 2021 - CERN-INFN meeting

status of the R&D on the High Rate layout

7th-10th Dec. 2021 - 1st test batch in ELTOS

• DLC patterning + PCB planarizing tests

$\mathbf{7^{th}}\textbf{-8^{th}}$ Mar. 2022 - 2^{nd} test batch in ELTOS

• Kapton DLCed foil coupling with PCB-readout

$\mathbf{31^{st}}\ Oct.\ \mathbf{2022}$ - joint INFN-CERN meeting

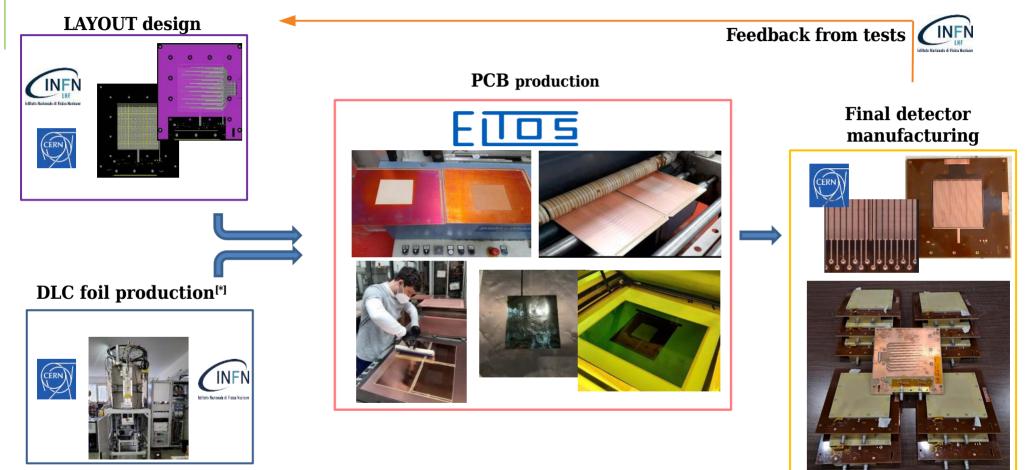
• Result discussion + Planning 2023 production

$5^{\rm th}$ Dec. 2022 - joint INFN-ELTOS meeting

• Planning 2023 production

$\mathbf{20^{th}\text{-}22^{th}}$ Mar. $\mathbf{2023}$ - 1^{st} production batch in ELTOS

- DLC patterning
- PCB palnarizing (prepreg thickness scan)


Nov-Dec. 2023 - INFN test

- D7.3 testing the detector produced
- <u>Submission of the deliverable report</u>

24th-27th Apr. 2023 2nd AIDAinnova Annual meeting

28th-31th Mar. 2022 1st AIDAinnova Annual meeting

WP7.3.2: Technology Transfer [flow chart]

[*] DLC Magnetron Sputtering machine co-funded by INFN- CSN1

19/3/2024

AIDAinnova 3nd annual meeting - M. Giovannetti - WP7.3.2

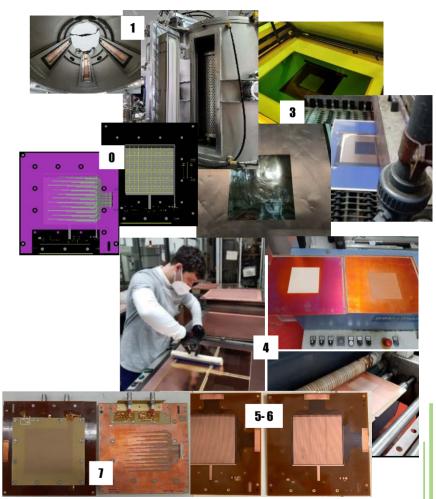
WP7.3.2: Technology Transfer 2023

- Step 0 Detector **PCB design** @ LNF + CERN-MPT
- Step 1 CERN_INFN **DLC sputtering machine** @ CERN (+INFN)
- In operation since Nov. 2022
- Production by LNF-INFN crew
- Step 2 Producing readout PCB by ELTOS
- pad/strip readout

- Step 3 **DLC patterning** by ELTOS
- photo-resist \rightarrow patterning with BRUSHING-machine

Step 4 – **DLC foil gluing** on PCB by ELTOS

Large press available, up to 16 PCBs workable at the same time


Step 5 - Ground network connections creation by CERN

PEP layout: Cu **P**atterning \rightarrow PI **E**tching \rightarrow Cu **P**lating

Step 6 - Amplification stage patterning by CERN

- Cu amplification holes image and HV connections by Cu etching
- PI etching \rightarrow plating \rightarrow amplification-holes

Step 7 - Electrical cleaning and detector closing @ CERN

WP7.3.2: Technology Transfer 2023

Step 0 - Detector PCB design @ LNF + CERN-MPT

Step 1 - CERN_INFN DLC sputtering machine @ CERN (+INFN)

- In operation since Nov. 2022
- Production by LNF-INFN crew

Step 2 - Producing readout PCB by ELTOS

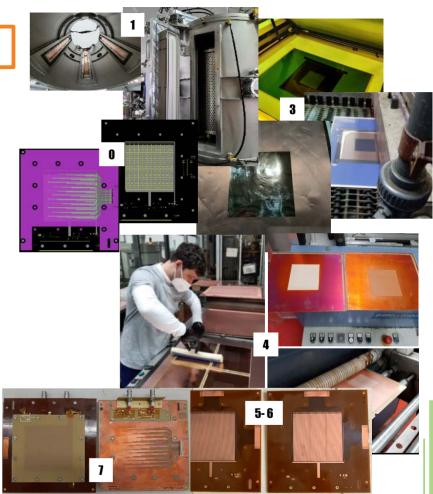
• pad/strip readout

Step 3 - **DLC patterning** by ELTOS

photo-resist \rightarrow patterning with BRUSHING-machine

Step 4 – **DLC foil gluing** on PCB by ELTOS

Large press available, up to 16 PCBs workable at the same time


Step 5 - Ground network connections creation by CERN

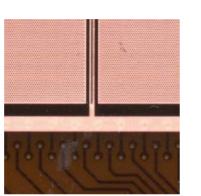
PEP layout: Cu **P**atterning \rightarrow PI **E**tching \rightarrow Cu **P**lating

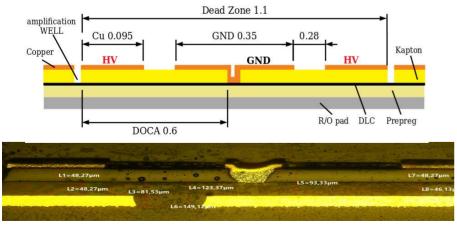
Step 6 - Amplification stage patterning by CERN

- Cu amplification holes image and HV connections by Cu etching
- PI etching \rightarrow plating \rightarrow amplification-holes

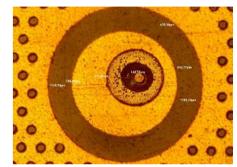
Step 7 - Electrical cleaning and detector closing @ CERN

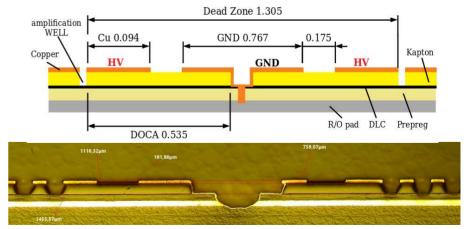
WP7.3.2: High-rate layout optimization



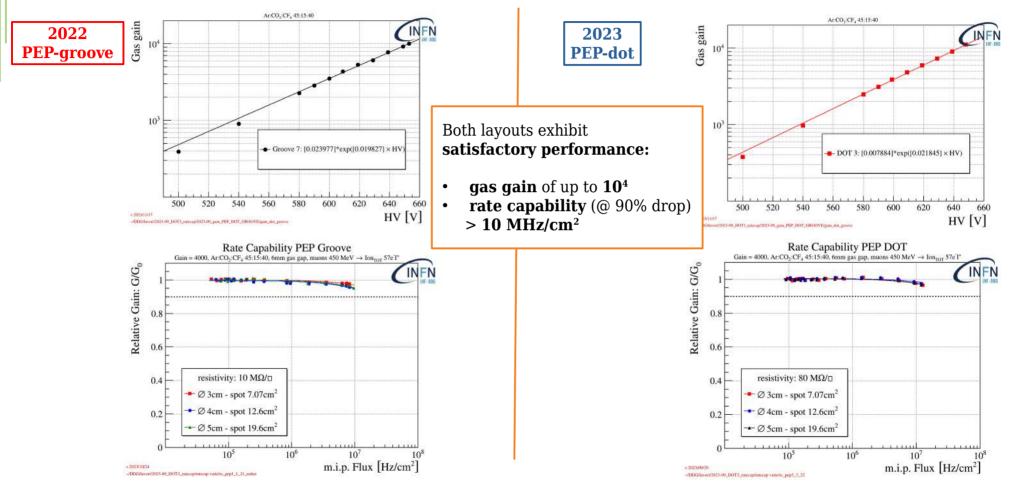

The GOAL: **minimizing** the average **path towards the ground** connection by introducing a **high-density grounding network** on the DLC layer. In **PEP** (Patterning-Etching-Plating) layouts the top Cu layer is connected to the DLC, plating through the APICAL foil.

DLC grounding by **conductive groove** Pad R/O = 9×9 cm² Grounding: - pitch = 9.0 mm - width = 1.1 mm

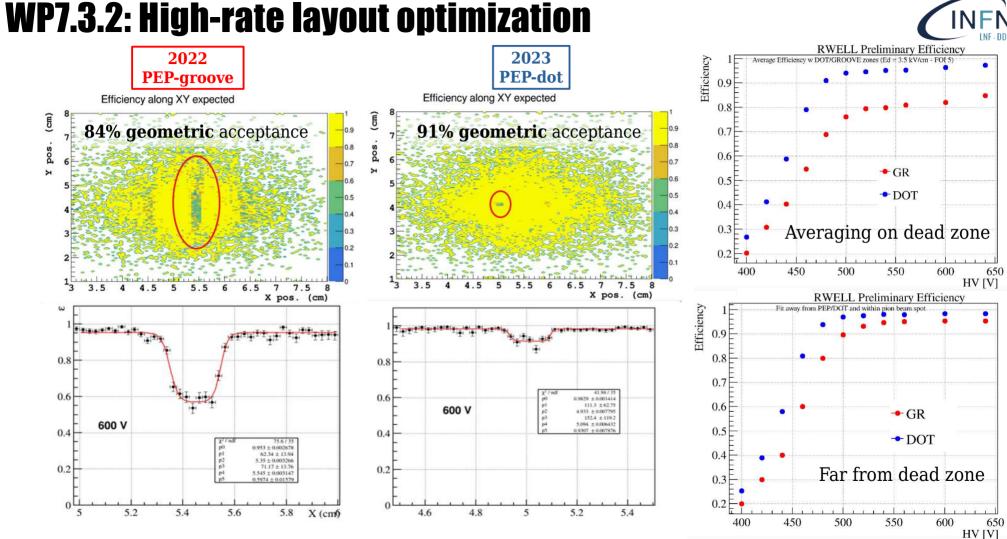

 \rightarrow 84% geometric acceptance



DLC grounding by **conductive DOT** Pad R/O = $9 \times 9 \text{cm}^2$ Grounding: - pitch = 9.0 mm - rim = 1.3 mm



 \rightarrow 97% geometric acceptance


WP7.3.2: High-rate layout optimization

AIDAinnova 3nd annual meeting - M. Giovannetti - WP7.3.2

9

AIDAinnova 3nd annual meeting - M. Giovannetti - WP7.3.2

WP7.3.2: Technology Transfer 2023

Step 0 - Detector **PCB design** @ LNF + CERN-MPT

Step 1 - CERN_INFN **DLC sputtering machine** @ CERN (+INFN)

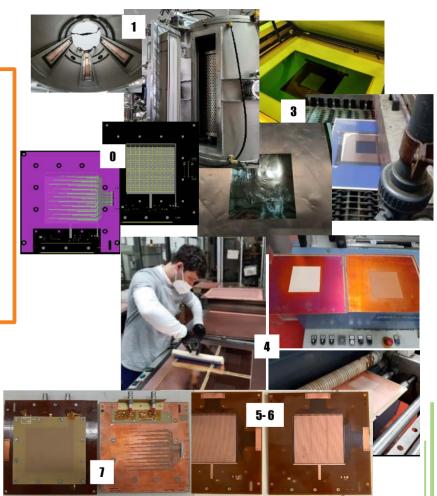
- In operation since Nov. 2022
- Production by LNF-INFN crew
- Step 2 **Producing readout PCB** by ELTOS • pad/strip readout

Step 3 – **DLC patterning** by ELTOS

photo-resist \rightarrow patterning with BRUSHING-machine

Step 4 - **DLC foil gluing** on PCB by ELTOS

• Large press available, up to 16 PCBs workable at the same time


Step 5 - Ground network connections creation by CERN

PEP layout: Cu **P**atterning \rightarrow PI **E**tching \rightarrow Cu **P**lating

Step 6 - Amplification stage patterning by CERN

- Cu amplification holes image and HV connections by Cu etching
- PI etching \rightarrow plating \rightarrow amplification-holes

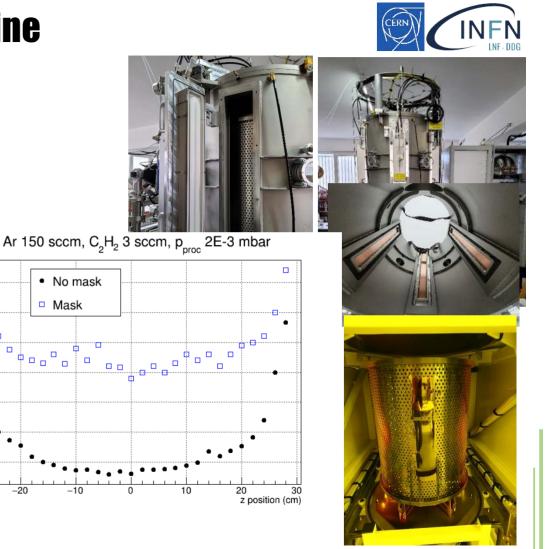
Step 7 – Electrical cleaning and detector closing @ CERN

This research has been supported by the E.U. Project AIDAInnova Task 7.3 (European Union's Horizon 2020 Research and Innovation programme, grant agreement N.101004761) 19/3/2024 AIDAinnova 3nd annual meeting - M. Giovannetti - WP7.3.2

C.I.D. - The CERN-INFN DLC machine

31st Oct. 2022 - Delivered 31st Oct. - 4th Nov. 2022 - Commissioning & test training 21st - 23rd Nov. 2022 - 1st DLC sputtering test • Ar + N_2 doping 19th - 28th Jun. 2023 - 2nd DLC sputtering test

- Ar + N_2 doping (% and P scan)
- 25th 29th Sep. 2023 3rd DLC sputtering test
 - Ar + C_2H_2 doping
- 6th 10th Nov. 2023 4th DLC sputtering test
 - $Ar + C_2H_2$ doping (uniformity test) •
- **19**th **23**th **Feb. 2024** 5th DLC sputtering test
 - Tuning large foil sputtering process •


Technical features:

- Flexible substrates up to 1.7m×0.6m ٠
- **Rigid** substrates up to 0.2m×0.6m

Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters.

CID allows to **sputter** or **co-sputter different** materials, to create a coating layer by layer or an adjustable **gradient** in the coating.

Thanks to Rui, Serge, Givi and Gianfranco - more details in this talk

-20

No mask

-10

Mask

p (MΩ/D)

350

300

250

200

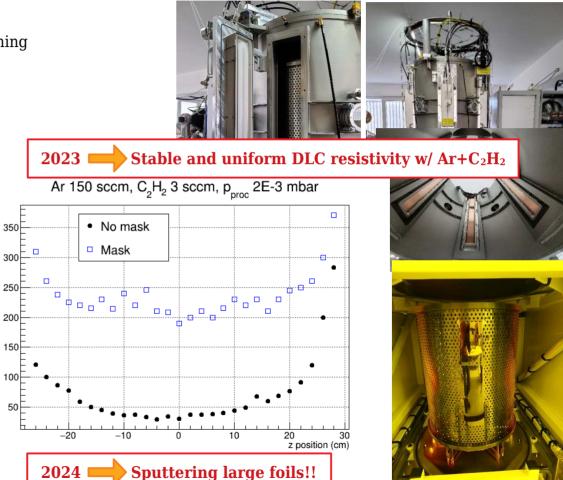
150

100

C.I.D. - The CERN-INFN DLC machine

 $\begin{array}{l} \textbf{31}^{st} \ \textbf{Oct. 2022} \ - \ \textbf{Delivered} \\ \textbf{31}^{st} \ \textbf{Oct. - 4}^{th} \ \textbf{Nov. 2022} \ - \ \textbf{Commissioning} \ \& \ test \ training \\ \textbf{21}^{st} \ - \ \textbf{23}^{rd} \ \textbf{Nov. 2022} \ - \ \textbf{1}^{st} \ \textbf{DLC} \ sputtering \ test \\ \textbf{ Ar} \ + \ N_2 \ doping \\ \textbf{19}^{th} \ - \ \textbf{28}^{th} \ \textbf{Jun. 2023} \ - \ \textbf{2}^{rd} \ \textbf{DLC} \ sputtering \ test \end{array}$

- Ar + N_2 doping (% and P scan)
- 25th 29th Sep. 2023 3rd DLC sputtering test
 - Ar + C_2H_2 doping
- $6^{\rm th}$ $10^{\rm th}$ Nov. 2023 $4^{\rm th}$ DLC sputtering test
 - Ar + C₂H₂ doping (uniformity test)
- $19^{\rm th}$ $23^{\rm th}$ Feb. 2024 $5^{\rm th}$ DLC sputtering test
 - Tuning large foil sputtering process


Technical features:

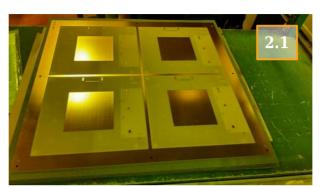
- Flexible substrates up to 1.7m×0.6m
- **Rigid** substrates up to 0.2m×0.6m

Five cooled target holders, arranged as two pairs face to face and one on the front, equipped with five shutters.

CID allows to **sputter** or **co-sputter different materials**, to create a coating layer by layer or an adjustable **gradient** in the coating.

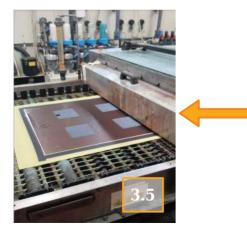
Thanks to Rui, Serge, Givi and Gianfranco - more details in this <u>talk</u>

p (MΩ/D)


WP7.3.2: co-production pilot test – DLC patterning

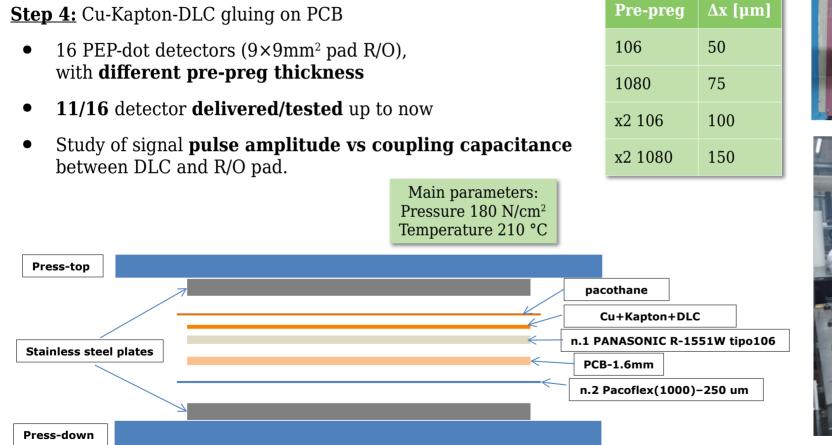
<u>Step 2:</u>

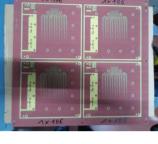
1) R/O PCB production

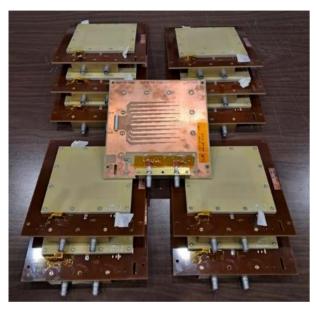

<u>Step 3:</u>

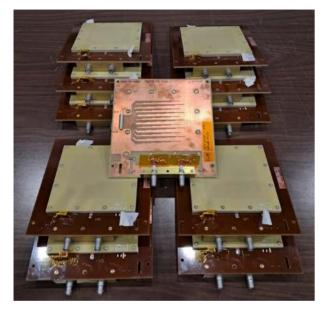
- 2) Photoresist **lamination** for DLC protection
- 3) Photoresist UV-**exposure**
- 4) Photoresist **development**
- 5) **DLC patterning** with brushing machine (@CERN different approach: JET-SCRUBBING)

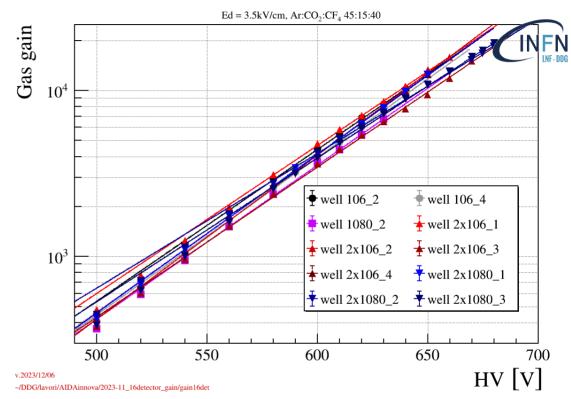
DLC	
Kapton	
Cu	



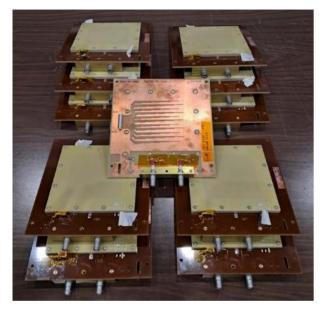


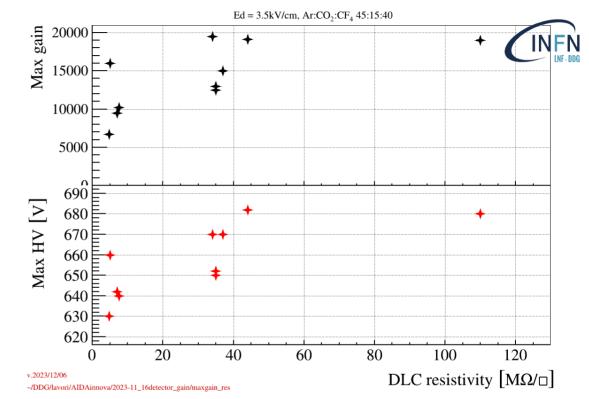

WP7.3.2: co-production pilot test – DLC-foil gluing

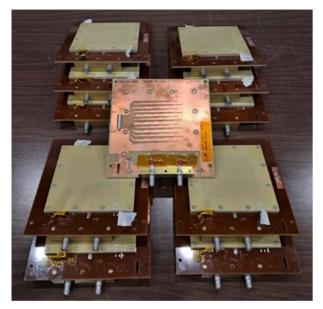


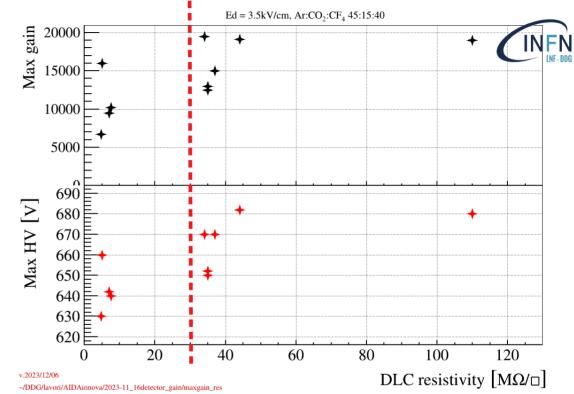

- **11/16** co-produced protos have been **delivered** and **tested**
- 10 are fine \rightarrow 90% yield
- 1 has been re-cleaned
 Waiting for the delivery of last 5 protos

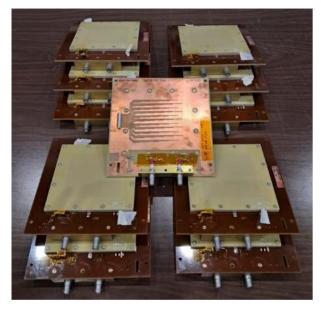
Detector #	Prepreg type	DLC resistivity	Production status	Max HV/Gain	comments
106_1	1x 106		Ready to be delivered		@ CERN
106_2	1x 106	7.5	Delivered	640/10000	
106_3	1x 106		Ready to be delivered		@ CERN
106_4	1x 106	7	Delivered	640/9500	
1080_1	1x1080		Ready to be delivered		@ CERN
1080_2	1x1080	4.8	Delivered	630/6700	
1080_3	1x1080	5	Ready to be delivered	Re-cleaned	@ CERN
1080_4	1x1080		Ready to be delivered		@ CERN
2x106_1	2x106	35	Delivered	660/16000	
2x106_2	2x106	37	Delivered	650/13000	
2x106_3	2x106	35	Delivered	670/15000	
2x106_4	2x106	34	Delivered	650/12500	
2x1080_1	2x1080	33	Delivered	670/19500	
2x1080_2	2x1080	110	Delivered	680/19000	
2x1080_3	2x1080	44	Delivered	680/19000	
2x1080_4	2x1080		Ready to be delivered		@ CERN

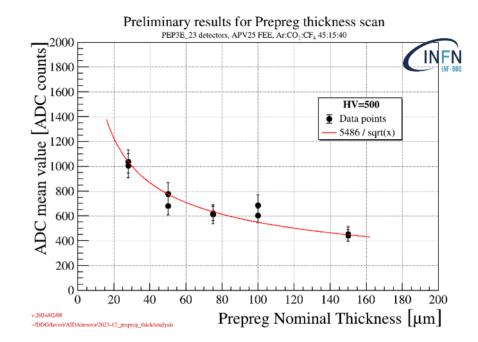



- 11/16 co-produced protos have been delivered and tested
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned Waiting for the delivery of last 5 protos


Characterized with X-ray gun \rightarrow Gas gain measurement


- **11/16** co-produced protos have been **delivered** and **tested**
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned Waiting for the delivery of last 5 protos


Characterized with X-ray gun \rightarrow Gas gain measurement


- **11/16** co-produced protos have been **delivered** and **tested**
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned Waiting for the delivery of last 5 protos

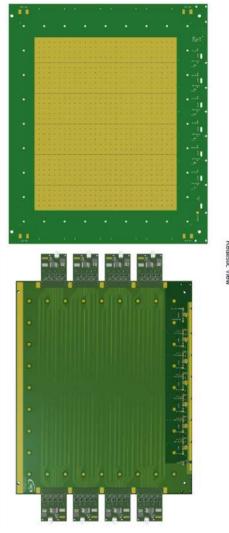
Characterized with X-ray gun \rightarrow Gas gain measurement

- 11/16 co-produced protos have been delivered and tested
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned
 Waiting for the delivery of last 5 protos

Measure of the **pulse amplitude** (APV25) vs prepreg thickness. The thinner the prepreg, the larger the capacitance between the R/O and the DLC, the larger the induced signal.

While the S/N depends also on the type of FEE used (the larger the capacitance, the larger the Noise), the increase in signal for thinner prepreg can be considered a general result.

WP7.3.2: next steps


PEP layout with an active area 250x300 mm²

- Designed & discussed w/Rui (**Oct./Nov. 2023 done**)
- Delivery (April/May 2024) •
- Characterization w/X-rays (June/July 2024)

MILESTONE - June/July 2024)

MS28: build a 0.3×0.3 m² prototype and the readout plane, with the new structure

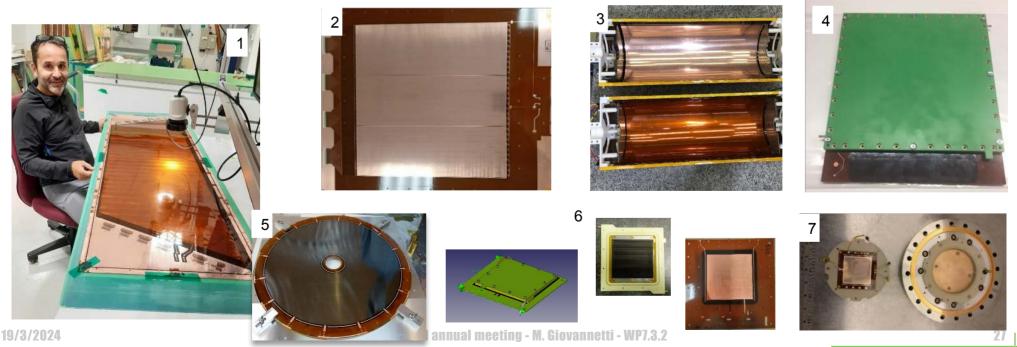
Preparation of a synthetic **addendum to the report** (design, construction, presentation of the X-rays characterization results ...)

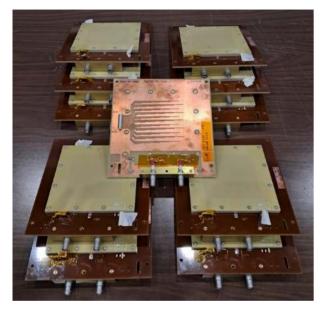
- The TT of μ-RWELLs construction steps to ELTOS Company, in close collaboration with the CERN-EP-DT-MPT Workshop has been successfully completed (yield ~90%):
 - Several construction steps performed by ELTOS
 - Detector finalization (Kapton Etching, electrical hot cleaning, ...) performed at CERN

- The TT of μ-RWELLs construction steps to ELTOS Company, in close collaboration with the CERN-EP-DT-MPT Workshop has been successfully completed (yield ~90%):
 - Several construction steps performed by ELTOS
 - **Detector finalization** (Kapton Etching, electrical hot cleaning, ...) performed **at CERN**
- 2) The **R&D with CERN-MPT** on **high-rate layouts** will be **finalized within 2024**:
 - ◆ Design/optimization of the high-rate layout → **PEP-dot** (97% geom. Acceptance) (DONE)
 - Optimizing main detector parameters:
 - $\rho_s \ge 50 M \Omega / \Box \rightarrow$ maximizing the gas gain
 - Optimization of the prepreg thickness \rightarrow maximizing the collected signal
 - Optimization of the amplification stage geometry \rightarrow maximizing the gas gain

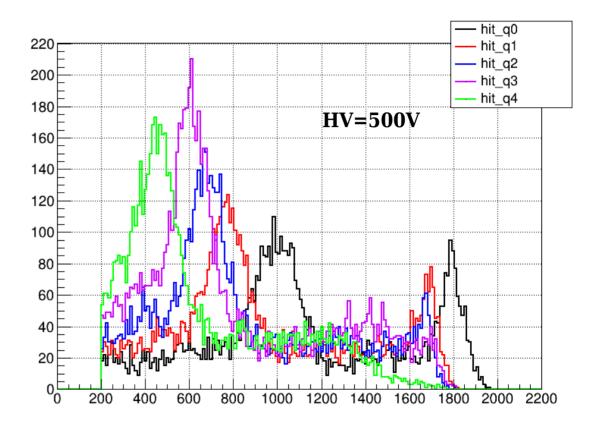
- The TT of μ-RWELLs construction steps to ELTOS Company, in close collaboration with the CERN-EP-DT-MPT Workshop has been successfully completed (yield ~90%):
 - Several construction steps performed by ELTOS
 - **Detector finalization** (Kapton Etching, electrical hot cleaning, ...) performed **at CERN**
- 2) The **R&D with CERN-MPT** on **high-rate layouts** will be **finalized within 2024**:
 - Design/optimization of the high-rate layout \rightarrow **PEP-dot** (97% geom. Acceptance) (DONE)
 - Optimizing main detector parameters:
 - $\label{eq:rhoss} \bullet \quad \rho_{\scriptscriptstyle S} \geq 50 M \Omega /\!\square \to maximizing \ the \ gas \ gain$
 - Optimization of the prepreg thickness \rightarrow maximizing the collected signal
 - Optimization of the amplification stage geometry \rightarrow maximizing the gas gain

Spare

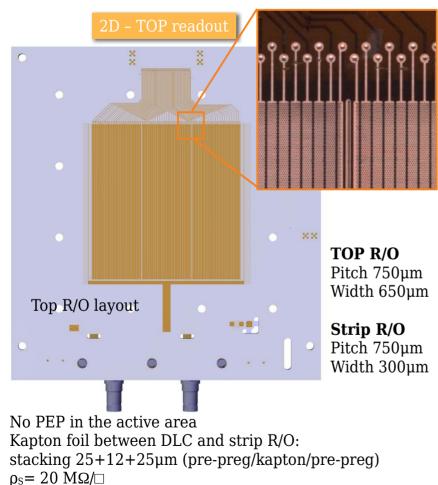


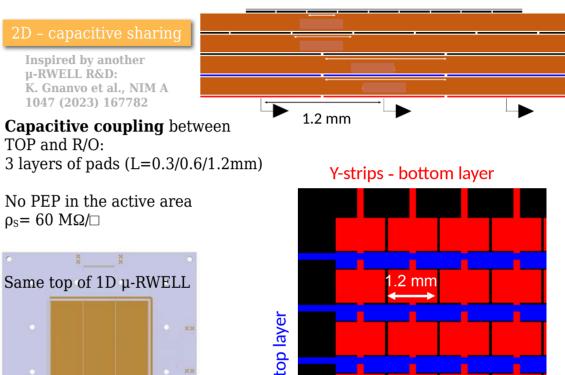

AIDAinnova 3nd annual meeting - M. Giovannetti - WP7.3.2

µ-RWELL technology spread

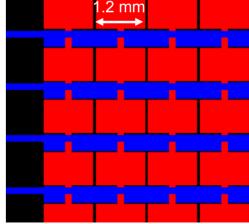

The $\mu\text{-}Resistive$ WELL is proposed in

- 1. CLAS12 @ JLAB: the upgrade of the muon spectrometer
- 2. X17 @ n_TOF EAR2: for the amplification stage of a TPC dedicated to the detection of the X17 boson
- 3. TACTIC @ YORK Univ.: radial TPC for detection of nuclear reactions with astrophysical significnace
- 4. Muon collider: hadron calorimeter
- 5. CMD3: uRWELL Disk for the upgrade of the tracking system
- 6. URANIA-V: a project funded by INFN-CSN5 for neutron detection,
- 7. UKRI: neutron detection with pressurized ³He-based gas mixtures

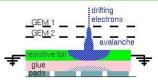

- **11/16** co-produced protos have been **delivered** and **tested**
- 10 are fine \rightarrow 90% yield
- 1 should be re-cleaned Waiting for the delivery of last 5 protos



Measure of the **pulse amplitude** (APV25) vs prepreg thickness


WP7.3.2: (June '23) 2D Read Out

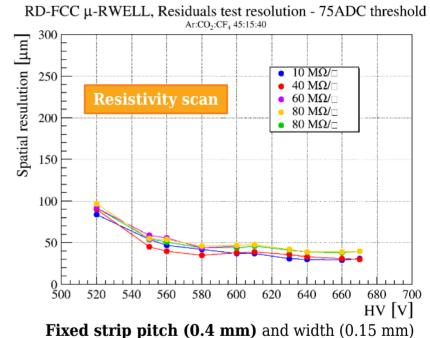
Trasversal view


X-strips - top layer



19/3/2024

29

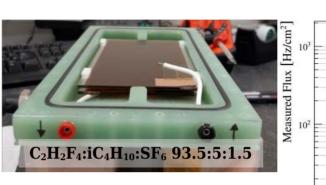

µ-RWELL: DLC charge spread

Need to reduce # FEE channels = Increase the R/O pitch

As expected: reduction of the space resolution.

No effects in this resistivity range.

 \rightarrow DLC resistivity uniformity is not a crucial parameter Near future: charge dispersion through different R/O architecture \rightarrow capacitive sharing R/O


sRPC – an MPGD-tech based RPC



DLC-based RPC:

- From bulk resistivity to surface resistivity: easy tunable resistivity w.r.t. bakelite or glass
- μ-RWELL inspired
 High Rate schemes
- Flexible substrate

A promising novel technology, from MPGD material and technology experience.

sRPC time resolution

timing fixed THR

timing fit extrapolation

ns

su 4.5 4.5 4

35F

3E

2.5

2F

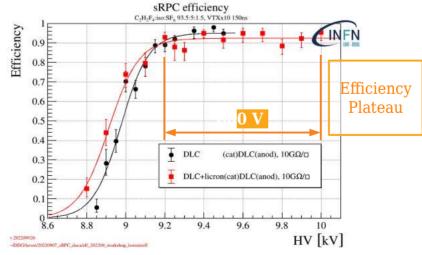
1.5 F

¥ 10226023

8.6

-/DDG/gvor/20220907 sRPC docald? 202209 workshop timin

8.8


9

92

9.4

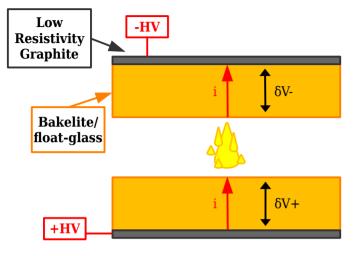
9.6

9.8

31

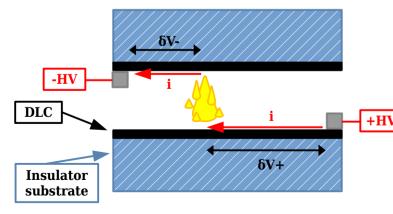
10.2

HV [kV]


INFN

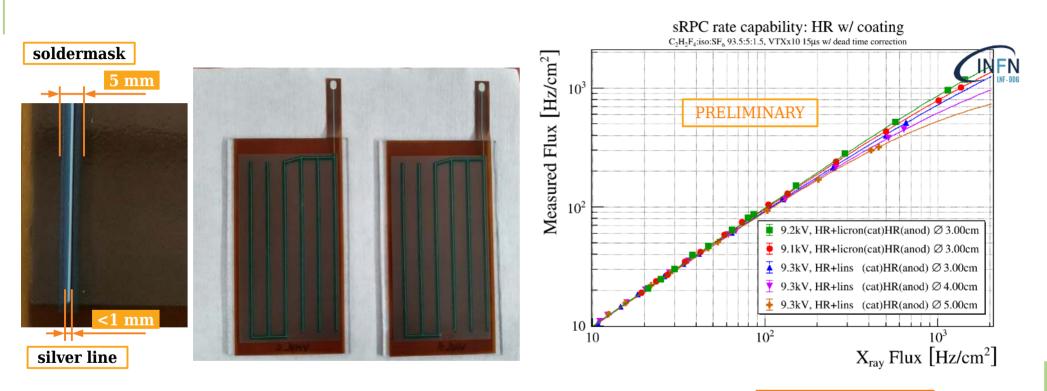
Time

Resolution


10

Bulk RPC vs Surface RPC

Classical RPCs


- Bulk resistivity electrodes (bakelite, float-glass, ...)
- Recovery time proportional to **volume resistivity, electrode thickness**
 - $\circ \quad \tau = \rho_V \epsilon_0 (\epsilon_r + 2d/g)$
 - Low volume resistivity and thin electrodes, together with the reduction of the gas gain (@high gain low noise pre-amp) is the standard recipe to increase the detector rate capability.

sRPCs - surface RPC

- Surface resistivity electrodes manufactured with sputtering techniques of Diamond-like-carbon (DLC) on flexible supports
 - $^{\circ}$ The technology allows to realise large electrodes with a DLC surface resistivity in a very wide range: 10 MΩ/□ ÷ 10 GΩ/□
- High density current evacuation schemes, similar to those used for resistive MPGD (μ-RWELL and MicroMegas), can be implemented to improve the rate capability of the detector

High Rate layout – preliminary results

A **preliminary** measurement of the **rate capability** (defined as the radiation flux corresponding to an efficiency drop of 20%) of the high-rate layout has been **performed** by irradiating the detector **with a 5.9 keV X-ray gun** with a spot size comparable with the pitch of the conductive grid realized on the DLC ($\rho_{DLC} \approx 1.6 \text{ G}\Omega/\Box$).

Rate capability of ~1 kHz/cm² with X-ray