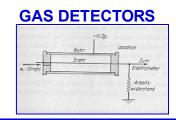


Advancement and Innovation for Detectors at Accelerators


WP7 - Gaseous detectors

WP COORDINATORS:

Silvia Dalla Torre, Burkhard Schmidt

OUTLOOOK

- Task 7.1: Coordination and Communication
- Task 7.2: RPC sector
 - 7.2.1: Multi-gap RPCs (MRPCs) for fast timing
 - 7.2.2: Shower development in SDHCAL
 - 7.2.3: Eco-friendly gas mixtures for RPCs
- Task 7.3: MPGD sector, Technology and engineering
 - 7.3.1: Development of resistive electrodes for MPGDs
 - 7.3.2: Industrial engineering of high-rate μ-RWELLs
- Task 7.4: Large volume gaseous detectors
 - 7.4.1: A 4-channel electronic board for cluster counting
 - 7.4.2: High pressure gas TPC for neutrino physics
- Task 7.5: PID sector
 - Photon detectors for hadron particle identification at high momenta

(S. Dalla Torre, Burkhard Schmidt)

3 tasks

(C. Williams)

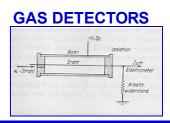
(Mary-Cruz Fouz)

(B. Mandelli, D. Piccolo)

2 tasks

- (P. Verwilligen)
- (G. Bencivenni)

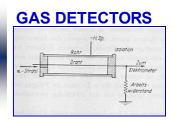
2 tasks


- (F. Grancagnolo)
- (A. Deisting) \rightarrow (Xianguo Lu)

1 task

(S. Dalla Torre)

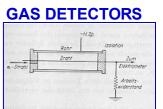
WP7, partners



				E	Beneficiarie	s	Associated Partners												
	7.1	CERN	INFN- Trieste																
	7.2.1	INFN- Bologna	LIP- Coimbra	Univerity of Clermont- Ferrand	PICOTECH SAS				Tsinghua University	1	Bundang	IRIS Co.	Benemérita Universidad Autónoma de Puebla						
	7.2.2	CNRS - IP2I	CNRS - LPC	CNRS - OMEGA	CIEMAT														
Tasks	7.2.3	CERN- EPDT	INFN- Frascati	INFN- Roma2	INFN- Bologna	INFN-Bari	INFN- Torino	Ghent University											
	7.3.1	INFN- Pavia	INFN-Bari	INFN- Lecce															
	7.3.2	INFN- Frascati	INFN- Bologna	INFN- Ferrara	CERN	ELTOS													
	7.4.1	INFN- Lecce	CAEN																
	7.4.2	RHUL	UOXF	INFN-Bari	USC	CERN	CSIC-IFIC												
	7.5.1	INFN- Trieste	INFN-Bari	INFN- Bologna	Charles University				USTC	INCOM									

- Strong collaboration with <u>industry</u> (yellow boxes)
- Wide and solid links also <u>outside Europe</u>

AIDA Task 7.1 - Activity in the last year


Coordination activity during the 3rd year

- 3 WP7 meetings: 7/7/23; 4/12/23; 19/3/24
- 2 WP7 reports to the SC: #10 (12/7/23); #12 (7/12/23)
- "Help-line" always open
 - So far, only used to postpone by 3 months Deliverable D7.3 and the related Milestone MS28: discussed and approved at the SC # 12

18-21/3/2024

AIDA DELIVERABLES & MILESTONES

																										85272	1.10.10.51	lastrismi	Attribute	6-A 343	SETTINESS.	Million
				Year 1						Year 2								Year 3						Year 4								
Tasks	s Description	1 7	2 3	4	5 6	7 8	9	10 1	.1 12	13 1	14 15	16 1	17 18	19 20	0 21 2	22 23	24 25	26 2	7 28	29 30	31 3	32 33	34 3	35 36	37 38	8 39 4	0 41	42 43	44 4	5 46	47 48	49 50
WP7: Gaseous detectors																																
7.1	Coordination and Communication					Γ																	\prod									
7.2	Multigap RPCs for fast timing and Eco-friendly gas mixtures for RPCs	$A\Box$				Γ		\perp																D						D		
/ 3	Development of resistive electrodes for MPGDs and Industrial engineering of high-rate μ-RWELL detector															M				D				M								
/ /	A 4-channel prototype electronic board for cluster counting and Hybrid readout high pressure gas TPC for neutrino physics																		+	7				₩ M						D M		
7.5	Photon detectors for hadron particle identification at high momenta					\prod'		\Box							\coprod	1					\ <u></u>	1					Z		D			
		_	7							_		_	_			Γ	4	Δ	IDA	/						MALL SI MING A				Deliverable	e: D7.2	1
I	AIDA																_	i i	nnova	1		1011	PES F		TES	AING A	ND HA	Jh	I	Date: Xx/0	3/2024	

Grant Agreement No: 101004761

AlDAinnova

Advancement and Innovation for Detectors at Accelerators Horizon 2020 Research Infrastructures project AIDAINNOVA

DELIVERABLE REPORT

PRODUCTION WITH INDUSTRY OF SMALL-SIZE µ-RWELLS

DELIVERABLE: D7.3

Grant Agreement No: 101004761

Advancement and Innovation for Detectors at Accelerators Horizon 2020 Research Infrastructures project AIDAINNOVA

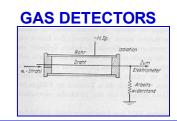
DELIVERABLE REPORT

CHARACTERISATION OF SMALL SIZE **MRPC** PROTOTYPES FOR FAST TIMING **AND HIGH RATES**

DELIVERABLE: D7.2

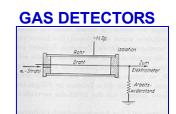
Grant Agreement No: 101004761

Advancement and Innovation for Detectors at Accelerators Horizon 2020 Research Infrastructures project AIDAINNOVA


MILESTONE REPORT

IDENTIFICATION OF A GAS MIXTURE FOR **NEUTRINO PHYSICS IN AN OPTICAL TPC**

MILESTONE: MS27


In the following:

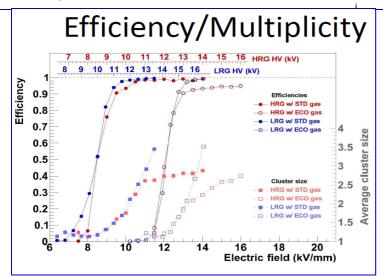
Highlights of the WP7 activity in period

April 2023 - March 2024

More attention dedicated to 3rd year Deliverables and milestines

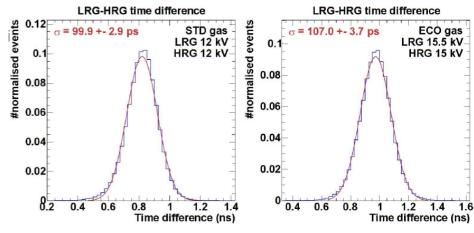
RPCs

tasks 7.2.1, 7.2.2, 7.2.3

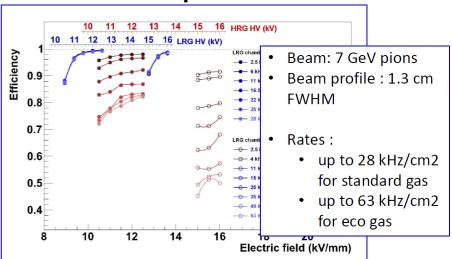

Task 7.2.1 - DELIVERABLE (M36)

GAS DETECTORS -H.Sp. -H.Sp.

MRPCs for high-rate applications

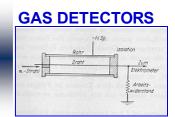

Beam test:

- T10 line at PS CERN
- Two MRPC tested :
 - 8-gap (2 stacks of 4-gaps) chamber (HRG
 - 10-gap (2 stacks of 5 gaps) chamber (LRG)
- Two mixtures of gas tested :
 - 98% $C_2F_4H_2$ and 2% SF_6
 - 100% HFO-1234ze



Eco-gas: 4 kV more to reach the plateau

Time resolution



Rate performance

Task 7.2.1 - DELIVERABLR (M36)

CHARACTERISATION OF SMALL SIZE MRPO PROTOTYPES FOR FAST TIMING AND HIGH PATES Deliverable: D7.2

Date: Xx/03/2024

Grant Agreement No: 101004761

AlDAinnova

Advancement and Innovation for Detectors at Accelerators
Horizon 2020 Research Infrastructures project AIDAINNOVA

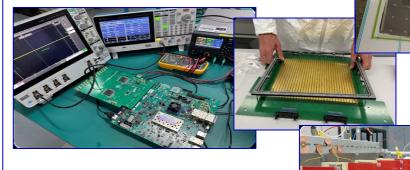
DELIVERABLE REPORT

CHARACTERISATION OF SMALL SIZE MRPC PROTOTYPES FOR FAST TIMING AND HIGH RATES

DELIVERABLE: D7.2

Conclusion

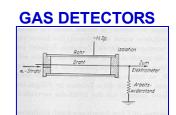
- HRG vs. IRG
 - A distinct difference in the rate capability at high rate flux
- Ecological gas vs. Standard gas
 - No conspicuous difference in efficiency and timing performance
- A realistic test on the rate capability needs to be carried out in the further test by irradiating the larger detector area instead of a focused beam on a small spot.



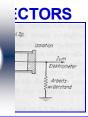
More from RPCs

GAS DETECTORS

- Task 7.2.1 MRPCs for fast timing at high rates
 - **Progress for the picoTDC card (128** ch.s)
- Task 7.2.2 SDHCAL for 5Dcalorimetry (space, amplitude & timing)
 - Fine time-resolution FE needed → in use PETIROC (~50ps), DAQ under development
 - Test of various MRPC prototypes
- Task 7.2.3 ECO-gasses
 - **Enriching the setup at GIF++: Humidifier, gas mixture OMRON** sensors to monitor the gas flow
 - Ageing test with ECO-gas 2 ongoing



Humidifier Mixer



MPGD technologies

tasks 7.3.1, 7.3.2

AIDA Task 7.2.1 - DELIVERABLE (M30-) M33)

18-21/3/2024

Grant Agreement No: 101004761

AIDAinnova

Advancement and Innovation for Detectors at Accelerators
Horizon 2020 Research Infrastructures project AIDAINNOVA

DELIVERABLE REPORT

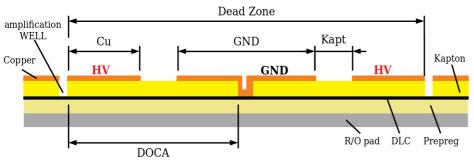
PRODUCTION WITH INDUSTRY OF SMALLSIZE µ-RWELLS
LAYOUT design

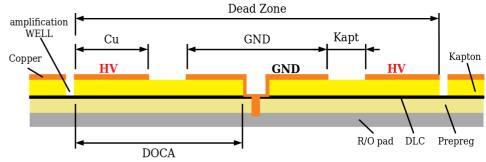
DELIVERABLE: D7.3

INFN

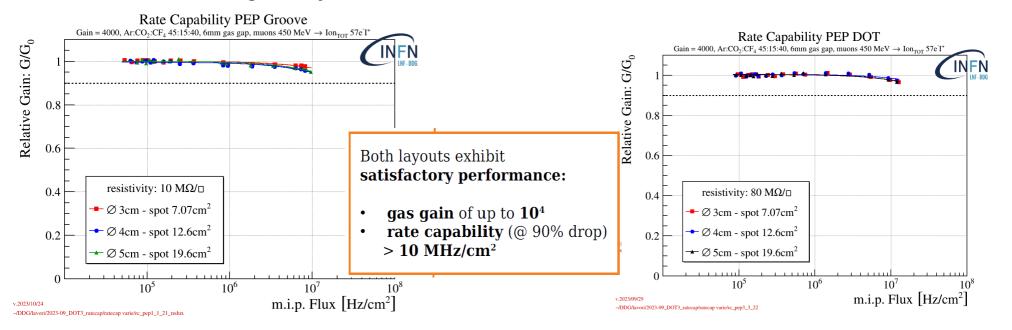
DCL foil production (*)

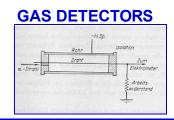
This report addresses the technology transfer of the micro-RWELL detector to ELTOS SpA, an industry specialized in Printed Circuit Board manufacturing.


*DLC Magnetron Sputtering machine co-funded by INFN- CSN1



AIDA Task 7.2.1 - DELIVERABLE (M30-) M33)


2 high rate configuration realized and satisfactory tested


PEP-grove layout

PEP-DOT layout

MPGD TECHNOLOGIES, more

Task 7.3.1 - resistive detectors for MPGDs

- Comparing DLC foils produced with different approaches
 - lon beam deposition

Pulsed laser deposition

Original approaches

- Magnetron Sputtering (MS) @ CERN
- also used to produce the DLC foils of the previously discuss TT effort

Large Volume Gaseous Detectors

tasks 7.4.1, 7.4.2

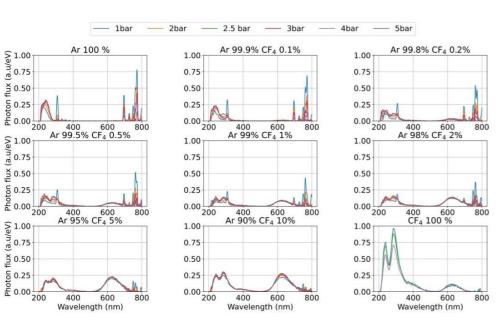
Task 7.4.2 - MILESTONE (M36)

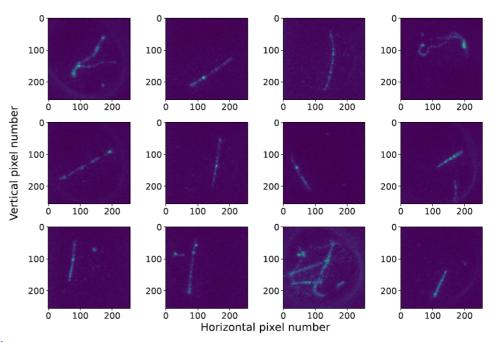
Grant Agreement No: 101004761

AIDAinnova

Advancement and Innovation for Detectors at Accelerators
Horizon 2020 Research Infrastructures project AIDAINNOVA

MILESTONE REPORT

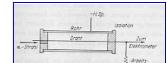

IDENTIFICATION OF A GAS MIXTURE FOR NEUTRINO PHYSICS IN AN OPTICAL TPC

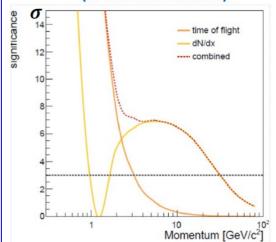

MILESTONE: MS27

Demonstrated: the possibility of doing timetagging and accurate particle tracking, simultaneously, in next-generation neutrino experiments in high pressure TPCs

Cosmic rays detected from luminescent light in by a CCD camera (Ar: CF4 = 99 : 1)

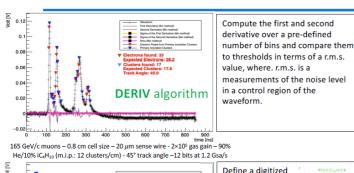
PRIMARY SCINTILLATION





Large Volume Gaseous Detectors, more

GAS DETECTORS


IDEA drift chamber expected π/K separation (DELPHES simulation)

Task 7.4.1 - Electronics for cluster counting

- Cluster counting in gaseous drift chambers for PID
- Needed: fine time-resolution electronics with local intelligence to reduce at an early stage the data bandwidth

Peak finding algorithms

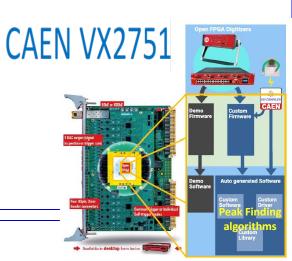
Define a digitized pulse template with raising and falling exponentials.

Scan the data waveform by comparing it to the template, normalized to the amplitude, and construct a χ^2 . If above threshold, subtract the found peak from the waveform and iterate until no new peaks are found.

2 x 2-ch ADC32RF45

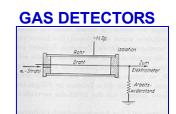
OR

ADC (ADC32RF4

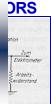

1 x 4-ch LMH6522

ASoC V3 DESIGN DETAILS

Compact, high profitance of particular or support of the particular of the

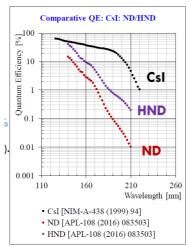

ADC (ADC32RF45 or LMH6522) + FPGA KCU105

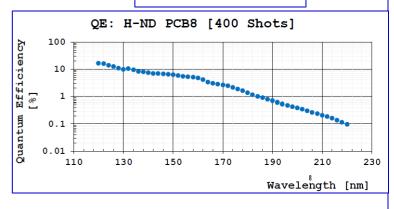
18-21/3/2024 AIDAinnova a



Photon Detection for PID

task 7.5.1





MPGD-based PDs - novel photoconverters for operation in gas

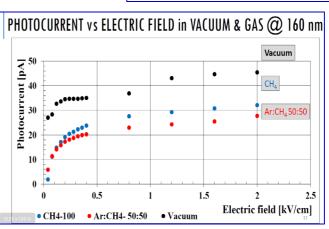
Photoconverter QE

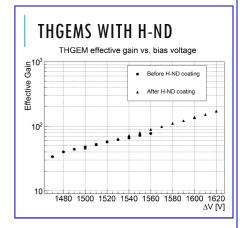
Nanodiamond photocathodes for MPGD based single photon detectors

Qualifying the photoconverter for gaseous PD

VUV SENSITIVE PHOTOCATHODES

Csl

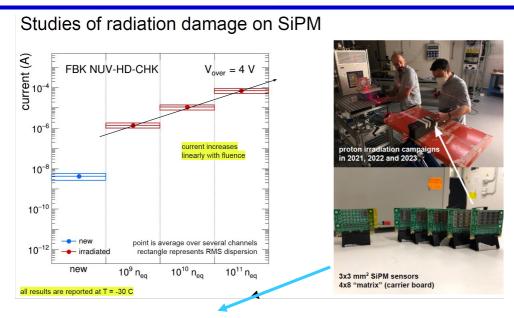

- > Low electron affinity > 0.1 eV
- > Wide band gap > 6.2 eV
- > Typical Quantum Efficiency > 35 50% @ 140 nm
- > Csl has hygroscopic nature
- > Aging > Ion Accumulation > Degradation in QE of PC

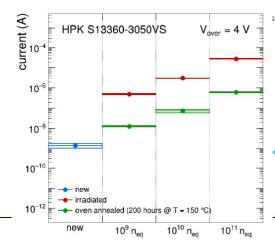

The only one used so far

Nanodiamond (ND)

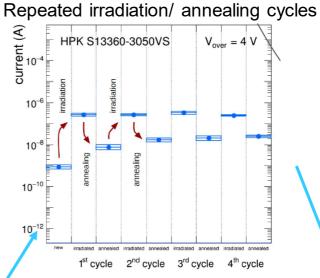
- > Low electron affinity > 0.35 0.5 eV
- > Wide band gap > 5.5 eV
- > Preliminary measured QE > 30 40% @ 140 nm for Hydrogenated ND. (We meas 7.7% after one year H-ND in H_2O).
- > Chemically inert
- > Radiation hard
- > Good thermal conductivity

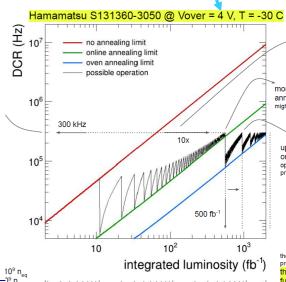
The novel option





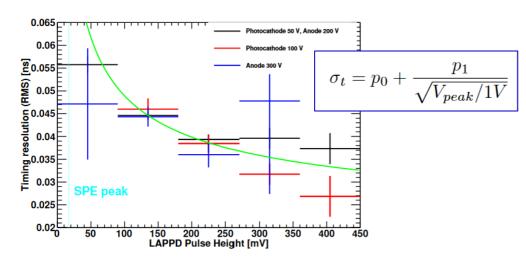
Si PMs

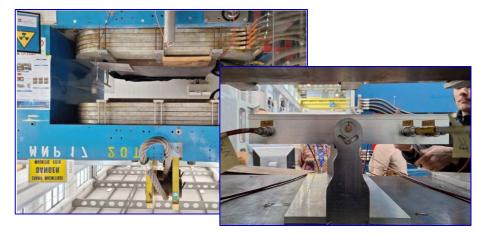

High-temperature annealing recovery


"Online" self-induced annealing

AIDAinnova annual meeting

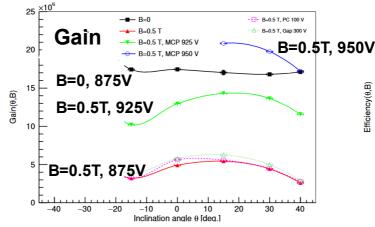
Ageing model

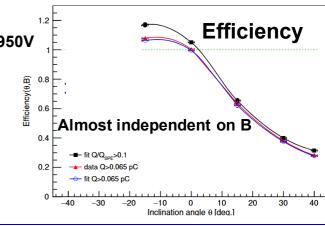

delivered fluence (1-MeV n₂₂ / cm²)



LAPPD – large-size MCP-PMTs

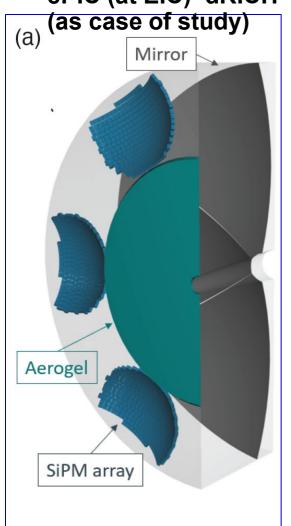
finalization and publication (NIMA) of the timing studies

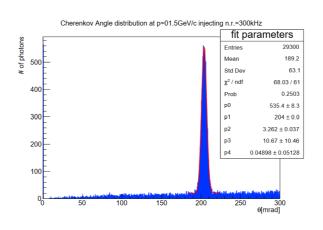



Performance in magnetic field, also vs. orientation

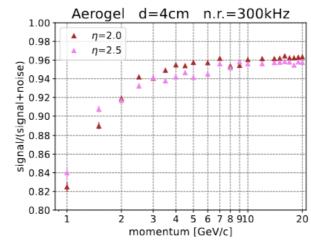
SPE time resolution: 75 ps

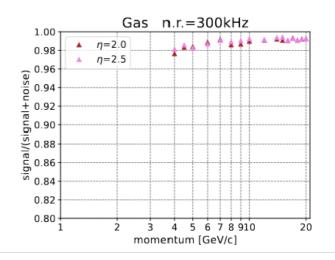
Asymptotic limit for large amplitude (multiple PE events): 18 ps

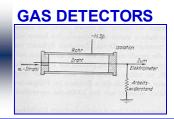




arion Zugn Elektrometer Arbeitsevillerstand


Simulation – Impact of the SiPM dark noise


ePIC (at EIC) dRICH


Purity = signal / (signal+noise)

SUMMARIZING

SUBSTANTIAL PROGRESS IN ALL THE TASKS

OF WP 7