

Workpackage 8 - Calorimetry and Particle ID Detectors

AIDAinnova 3rd Annual Meeting – March 21st 2024

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004761.

Task 8.1. Coordination and Communication

Task 8.2. Towards next generation highly granular calorimeters

- Integration aspects of highly granular calorimeters
- Future liquid noble gas calorimeters

Task 8.3. Innovative calorimeters with optical readout

- Crystal detectors
- Large-area scintillator detectors

Task 8.4. Innovative solid-state light sensors and highly-granular dual-readout fibre-sampling calorimetry

- Innovative SiPMs and future applications in PID detectors
- Development of highly granular dual-readout fibre-sampling calorimeters

2

WP8 - Beneficiaries and Associated Partners

Beneficiaries:

CAEN (Industry) CERN CNRS-IJCLab, CNRS-LLR, CNRS-LPNHE CUNI DESY FBK ("Interface to industry") FZU INFN-BO, INFN-LNF, INFN-MI, INFN-PD, INFN-PG, INFN-PV, INFN-RM1, INFN-TO JSI JGU **MPP-MPG** TAU University of Bergen University of Sussex Vilnius University

Associated Partners:

FOTON (Industry) GLASS2POWER (Industry) Minsk **HZDR** Crytur

3

WP8 - Timeline

WP8 - AIDAinnova 3rd Annual Meeting March 21st, 2024

1/4/25

Summary – WP8 Milestones

#MS	Description	Task	Due	
MS30	Conceptual design and technical specifications of DAQ interfaces for highly granular electromagnetic and hadronic calorimeters	8.2.1	M15 → M18	Re
MS31	Design and simulation of LAr readout electrode	8.2.2	M23	Re
MS32	Test benches for testing detecting materials in picosecond and sub-picosecond domains.	8.3.1	M12	Spe
MS33	Design and test of scintillating tiles or strips with large active area suitable for large area detectors	8.3.2	M15 → M23) ד
MS34	Definition of SiPM requirements and performance studies with simulations of different use cases	8.4.1	M18 → M21	Re
MS35	Definition of the assembly method and of the ASIC specifications for a dual-readout calorimeter	8.4.2	M23	Re

WP8 - AIDAinnova 3rd Annual Meeting March 21st, 2024

Туре

Lead

port to StCom

port to StCom

ecs data sheet

Operational Testbenches

port to StCom

port to StCom

DESY

CUNI

CERN

MPG-MPP

JSI

INFN-MI

Last steps – WP8 Deliverables

	Description	Task	Lead	Туре	Dissemination	Due
D8.1	Demonstrator of a combined read-out system of highly granular electromagnetic and hadronic calorimeters	8.2	DESY	DEM	PU	M36
D8.2	Report on prototypes construction, performance and assessment of industrialisation	8.3	CERN	R	PU	M35
D8.3	Qualification of neutron irradiated SiPMs at different temperatures	8.4	JSI	R	PU	M44
D8.4	Construction and qualification with beam of 10×10 cm², 2 m long, prototypes	8.4	INFN-MI	DEM	PU	M46

• Report for D8.2 in hands of AIDAinnova Management \rightarrow nearly accomplished

• Need to shift D8.1 by 6 months

- Regular Task-Leader Meetings
 - Among others: reminder on publications and orientation to publication committee
 - Expect that number of publications increases in coming months
- WP8 Face-to-Face Meeting 18.01.2024
 - https://indico.cern.ch/event/1344030
- Mailing lists
 - AIDAinnova-WP8-Taskleaders@cern.ch \rightarrow all task leaders
 - AIDAinnova-WP8-Institutes@cern.ch \rightarrow one contact per group/institute
 - AIDAinnova-WP8-General@cern.ch \rightarrow open for anyone interested (self-subscription)

WP8 – Task 8.2.1 **Highly Granular Calorimeters Integration**

A map to H.G.C. prototypes

AIDAinnova 3rd Annual Meeting March 21st, 2024 WP8 -

SiW-ECal Beam Test at DESY & CERN

mpv_layer7_xy

FEV10, 11, 12

- BGA packaging
- Incremental modifications
- From v10 -> v12
- Main "Working horses" since 2014

/Incona.eouary emzpo.m

FEV-COB

- Chip-On-Board : ASICs wirebonded in cavities
- Thinner than FEV with BGA
- Based on FEV11
- External connectivity compatible

FEV13

- BGA packaging
 - Improved routing
 - Local power storage

OCIONINGCOLO TOPILL

 Different external connectivity

mpv_layer3_xy

- (Average ± Standard Deviation) of Sigmas for all 64 channels in the same chip

- Latest PCBs, with optimized routing of power distribution shows better behavior
- Slightly larger spread on COB due to a near lack of decoupling capacitors

WP8 - AIDAinnova 3rd Annual Meeting March 21st, 2024

5/13

→ Homogeneous Prototype

Main issue: contact PCB–sensor (details in Roman's talk)

mpv_layer7_xy

mpv_layer4_xy

S 0 problem

mpv_layer3_xy

 Homogeneous response to MIPs over layer surface •> 90% efficiency for MIPs •Here white cells are masked cells due to PCB routing understood and will be correcte

... and bad layers

Inhomogeneous response to MIPs

- •Partially even no response at all, in particular at the wafer boundaries
- •Visusl inspection confirmed with electrical tests show that the sensor
- •Got delaminated from the PCB -> glus dots have failed
- Intensive topic of study

We have good layers ...

- Understanding sensor delamination \rightarrow heart of current R&D
- Systematic studies throughout 2023
 - Screening machines at IJClab and IFIC
 - Metrology seems to indicate that component mounting is not cuprit for deformation
 - Drying seems to help \rightarrow avoid humidity ?
 - Discrepancies between screening results at IJCLab and IFIC to be understood
- Progress on two methods for for hybridisation
 - Underfill
 - Double sided tape (after all a "pre-polymerised" material)
 - Have to learn now how to build ASUs using these technologies
 - Proper perforation and placement of perforated tape
 - Application of underfill to 18×18 cm² surface

•Tensile test stand operational and first results available

Calice TAU Sensors for LUXE

90 CALICE sensors received mid November

A probe card was designed and received in November from CERN (paid by TAU and IFIC).

December :

 modification of the probe station mechanics and installation of the probe card

January :

- we checked the LUT of the pins (pins number ^m DAQ channel)
- Started to test first sensors.
- Taking time to define the test procedure

System needed for electrical sensor characterisation in prototyping phase and for guality control in mass production (IV, CV, VBD, VFD,

CFD)

WP8 – Task 8.2.2 **Liquid Noble Gas Calorimeters**

Simulation studies in key4hep

Lots of ground work in 2023!

- Correct cells geometry was used in simulation but not in digi/reco
 - Now proper θ/ϕ positions used consistently everywhere
 - Much more flexible fullsim geometry: Can easily change cells and layers sizes

 - Can adapt the granularity per layer

Improvements in clustering

- Topo-clustering and fixed-size clusters adapted to new geometry
- Super nice tool to visualize showers and clusters
- Topo-clustering using ECal+HCal
- Technical work
 - Follow FCC software evolution (k4geo)

Designs for the endcaps: first ideas

Endcaps designs more complex than that of the barrel:

- "Turbine" design
 - More similar to barrel design 0
 - Symmetric in ϕ
 - Issue: increase in the size of the Noble 0 liquid gaps
 - Need to stack several cylinders

N. Morange (IJCLc

Each e 24 tim

0.4

)Alnnova Annual meeting, 19/03/20

WP8 – Task 8.2.2 **Liquid Noble Gas Calorimeters**

Prototyope 2024 @ IJCLab

Learning from the previous generation

Next prototype at IJCLab

- All layers, 3 towers
- Readout all cells at the back
 - Best for material budget in calo, worst for cross-talk
- Study options for additional shielding
- **Connectors** for easy readout/injection
- Possibility to merge several PCBs
- Received January 2024 0

Conclusions

Simulations

- Road to as accurate simu as possible to inform the design is long !
- Great progress achieved in 2023
- Expect conclusions from granularity optimisation studies in 2024

Electrode prototypes

- demonstrate scaling up of measurements system
- Next steps @ CERN: new full-scale prototype

Other aspects of simulation progressing towards physics performance evaluation

Previous generation of prototypes very successful at demonstrating the concept New electrode @ IJClab: validate detailed understanding on realistic scale electrode and

WP8 – Task 8.3.1 Crystal Detectors

TABLE OF CONTENTS

1.	INTRODUCTION4	Ļ
2.	MATERIALS DEVELOPMENT)
2	2.1. IMPROVEMENT OF RESPONSE TIME OF SELF-ACTIVATED SCINTILLATOR PWO	5
	2.1.1. Understanding the fast decay process	5
	2.1.2. Towards production of Ultra-FAST PWO	6
2	2.2. ACCELERATION OF LUMINESCENCE DECAY IN CE-ACTIVATED AND MG-CODOPED MULTICOM	PONENT
C	GARNETS	6
	2.2.1. Acceleration of luminescence decay by aliovalent codoping in Gd-containing garnet type scintill	ators.6
	2.2.2. Acceleration of luminescence decay in (Lu,Gd) ₃ (Ga,Al) ₅ O ₁₂ :Ce,Mg	7
	2.2.3. Acceleration of luminescence decay in $Gd_3Ga_*Al_{5-x}O_{12}$: Ce, Mg	8
	2.2.4. Towards mass production of highly codoped Gd ₃ Ga _x Al _{5-x} O ₁₂ :Ce,Mg	9
2	2.3. NANOCOMPOSITE SCINTILLATORS BASED ON LEAD HALIDE PEROVSKITE NANOCRYSTALS	10
	2.3.1. $CsPbBr_3 NCs$ in PMMA/PLMA	11
	2.3.2. $CsPbBr_3 NCs$ in PMMA/PS	11
	2.3.3. $CsPbCl_3 NCs$	12
	Some of these developed nanocomposite scintillators were used to build innovative shashlik calor	imeter,
	preliminary tests are presented in Section 3.3	12
	2.3.4. Iowara large production of nanocomposite based on CSPDBr ₃ /CSPDCI ₃	12
3.	MAIN RESULTS ON PROTOTYPES13	
З	3.1. TIMING PERFORMANCE OF SCINTILLATORS PIXELS WITH MINIMUM IONISING PARTICLES	14
З	3.2. ELECTROMAGNETIC CALORIMETER PROTOTYPES	15
	3.2.1. Timing resolution with single PbF ₂ and PWO-UF crystals	16
	3.2.2. Radiation resistance of PbF ₂ and PWO crystals	18
	3.2.3. Development of a prototype for a fast, high-granularity crystal calorimeter with longi	tudinal
	2.2.4 Development of prototypes for a calorimeter with oriented crystals	10
5	3.2.4. Development of prototypes for a cator inteler with oriented crystals	19
	3.3.1 Development of nanocomposite scintillators for NanoCal project	20
	3.3.2. Construction of shashlik calorimeter prototypes with innovative scintillators	23
4.	CONCLUSION	,
5.	REFERENCES	}
AN	INEX: GLOSSARY)

Deliverable D8.2 submitted on Feb 28, 2024

WP8 – Task 8.3.1 **Crystal Detectors**

GAGG:Ce Scintillation acceleration by heavy Ce/Mg doping

No loss of time resolution! Light output reduction ⇔ decay time decrease

Decay time spectra

Tech transfer rom FZU to CRYTUR

GAGG Samples produced by CRYTUR

WP8 - AIDAinnova 3rd Annual Meeting March 21st, 2024

16

WP8 – Task 8.3.1 **Crystal Detectors**

NanoCal

- TB with nanocomposite scintillators \rightarrow fast & rad-hard
- Tests with mip and e⁻ @ CERN PS and Frascati BTF
- Protvino, Bic 1-3: custom-produced conventional organic scint.s
- Bic 4-5: nanocomposite scint.s

- Reference sample: 1.5% PTP + 0.04% POPOP in PVT ("Protvino")
- Bicocca 4, 5: CsPbBr3:Yb perovskites in PVT have ~50% light yield of ref. sample First nanocomposites with good mip response!
- Bicocca 3: Coumarin-6 (green) scintillator with ~160% light yield of ref. sample

Many new samples to be tested in next BTF run

3/21/24

Normalised charge spectra

WP8 – Task 8.3.2 Large-area scintillation detectors

JGU update

AIDA

87% accuracy achievable w/ integrating readout

n/y separation w/ PSD

WP8 - AIDAinnova 3rd Annual Meeting March 21st, 2024

SHADOW Fe/Scint ECAL prototype

WP8 – Task 8.3.2 Large-area scintillation detectors

INFN – Tile demonstrator for SHADOW μ detector

µ flux measurement in the foreseen location for SHADOWS (preview)

2 full-size modules

WP8 – Task 8.4.1 **Innovative SiPMs**

Neutron irradiation @ JSI of FBK NUV SiPMs

NUV-HD for AIDAInnova

Design of new rad-hard design with low field under way Production start: Q1 2024, end Aug. 2024

WP8 - AIDAinnova 3rd Annual Meeting March 21st, 2024

Several different SiPM and pixel sizes

WP8 – Task 8.4.2 Highly granular dual-readout calorimeter

- Started series production ...
- 18 MiniModules (MMs) completed
 - ~5-10% rejection for both sci-fibres and capillary tubes
- Estimated production rate: ~ 2 MMs / week

•SiPM readout: Integration tests w/ dummy components:

- Waiting for (hopefully) final pieces
- Aiming at beam test of few modules w/ PMT readout in 2024

WP8 – Task 8.4.2 **Highly granular dual-readout calorimeter**

New:

R&D on digital-SiPMs (SPAD arrays in 110 nm CMOS technology)

→ FBK project

→ Explore both fully digital & mixed analog+digital approach

> → Develop demonstrator chip $8 \times 1 \text{ mm}^2 \text{ SiPMs}$

ECFA DRD4 WP4.1 Solid State Photon Detectors Meeting - February 26, 2024

11

Conclusions

All WP8 activities quickly progressing \rightarrow few delay-causing issues promptly tackled

Just a subset presented here

 \rightarrow too many to be summarised here: apologies for that!

Several sub-tasks already satisfied their committments \rightarrow only 3 deliverables missing

Significant impact of WP8 on DRD-on-Calorimetry (DRD6)

 \rightarrow need to clarify interplay

 \rightarrow DRDs must boost AIDAinnova activities and viceversa

Backup

WP8 - AIDAinnova 3rd Annual Meeting March 21st, 2024

