
Geant4 Interface

Koichi Murakami (KEK)

28th Geant4 Collaboration Meeting 2023

Notes on Python Binding

Python2 : End of life

- Python2 became End of Life in Apr/2020.
- Python2 codes will be dropped in the v11 release.
- Only support Python3 codes

Boost.python to Pybind11

- Change C++ binding tool
- Wrapper approach is very similar to Boost.python (Template base)
- o Header only
- C++11 (modern C++) support / STL container support

Pybind11

A binding tool between C++ and Python

https://github.com/pybind/pybind11

Header only. Need cmake modules (pybind11)

- Installation:
 - o self-install (RH-variants)
 - o use apt in Ubuntu
 - o use brew in Mac
 - o /usr/local (Intel)
 - o /opt (Apple Silicon)

How to bind from C++ to Python

void export_G4RunManager(py::module& m)

m.def("CreateRunManager",

&::CreateRunManager);

py::class_<G4RunManager>(m, "G4RunManager") .def_static("GetRunManager",

```
.def("SetVerboseLevel",
.def("GetVerboseLevel",
.def("GetVersionString",
```

```
.def("SetNumberOfThreads",
.def("GetNumberOfThreads",
// ----
.def("Initialize",
```

```
.def("BeamOn",
```

.def("AbortRun",

.def("AbortEvent",

&G4RunManager::GetRunManager, py::return_value_policy::reference) .def_property("verboseLevel", &G4RunManager::GetVerboseLevel, &G4RunManager::SetVerboseLevel) &G4RunManager::SetVerboseLevel) &G4RunManager::GetVerboseLevel) &G4RunManager::GetVersionString, py::return_value_policy::copy) &G4RunManager::SetNumberOfThreads) &G4RunManager::GetNumberOfThreads)

> &G4RunManager::Initialize) &G4RunManager::BeamOn, py::arg("n_event"), py::arg("macroFile") = nullptr, py::arg("n_select") = -1) &G4RunManager::AbortRun, py::arg("softAbort") = false) &G4RunManager::AbortEvent)

For each class, define function maps in a template meta-programming style.

Same way as boost-python

Notes on Geant4Py (1)

There are some tips for running Geant4Py

LD_PRELOAD (Linux)

• For TLS memory allocation, we have to preload a Geant4 library.

- # export LD_PRELOAD=libG4run.so (bash/zsh)
- # setenv LD_PRELOAD libG4run.so (csh/tcsh)
- o In macOS, this is not necessary.
- The multi-threading feature is off as a 1st step.
 - In the current version of Geant4Py, we limit Geant4 in sequential mode forcibly by setting G4FORCE_RUN_MANAGER_TYPE inside __init__.py script.
 - o In the future release, multi-threading mode can be activated.

Notes on Geant4Py (2)

Qt5 conflict

• We recommend building Geant4 without the Qt5 feature to avoid the conflict.

If you use the Anaconda version of Ptyhon3, there might be a conflict between the Qt5 libraries.
 When Geant4Py detects the conflict, it shows the following warning message.

!!! Warning !!!

A non-system python (e.g., Anaconda version of Python) is detected.

If you have a problem with Qt5 library version,

```
set the environment variables, "G4PY_QT5_PRELOAD = 1"
```

to preload the system Qt5 library as a temporal solution.

Please consider installing a Geant4 library for Geant4Py

without the Qt feature.

- o Geant4Py will preload the system Qt5 when this environment variable is set.
 - # export G4PY_QT5_PRELOAD=1 (bash/zsh)
 - # setenv G4PY_QT5_PRELOAD 1 (csh/tcsh)
- Currently, we cannot run Geant4Py on the Anaconda version of Python on Mac. Use the system Python and install the additional packages (Jupyter/numpy/matplotlibt/...) using pip.

>>> import geant4

python3
Python 3.8.8 (default, Apr 13 2021, 19:58:26)
[GCC 7 2 21 :: Anaconda, Inc. on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import geant4

/ ____/ ____ / __/ / // // ____ Geant4-Python Interface / (_ / -_) _ `/ _ // __/ __/ __/ Version: 1100 ___/__/__//__/ __/ Date: (31-October-2021) /___/

Environment variable "G4FORCE_RUN_MANAGER_TYPE" enabled with value == Serial. Forcing G4RunManage

Geant4 version Name: geant4-10-07-ref-09 [MT] (31-October-2021) Copyright : Geant4 Collaboration References : NIM A 506 (2003), 250-303 : IEEE-TNS 53 (2006), 270-278 : NIM A 835 (2016), 186-225 WWW : http://geant4.org/

Examples with Jupyter (1)

There are 3 examples with Jupyter .ipynb files:

exampleB1

- This example has the same capability as Geant4 basic example B1.
- The geometry is implemented in C++ and exported to a Python module, which shows how to export your C++ component to Python. (Thin wrapping approach)

phantom_dose

- This example shows a practical application. It contains a complete chain of simulation and analysis processes.
- We calculate dose distributions in a water phantom for electron and proton beams.
- Voxel doses are scored with the command-line scoring capability and stored into CSV files.
- This data is analyzed with Pandas and Matplotlib Python tools. Finally, dose maps and depth dose curves are obtained.

Examples with Jupyter (2)

emplot

- This example shows how to retrieve the photon cross-sections and stopping powers of charged particles.
- It prepares a mockup (geom/pl/primary), then changes the target materials.
- The EM calculator can calculate a cross-section for each process and stopping powers.
- For stopping power, the ionization and bremsstrahlung components can be calculated for electrons.
- The example includes plots by Matplotlib.

phantom_dose: User Classes

In [3]:

set detectot construction
phantom = WaterPhantom()
#phantom.phantomXY = 50.*cm # phantom size can be changed.
#phantom.phantomZ = 30.*cm
gRunManager.SetUserInitialization(phantom)

```
# set physics list
```

```
physics_list = FTFP_BERT()
gRunManager.SetUserInitialization(physics_list)
```

```
# Medical Beam as PGA
medical beam = MedicalBeam()
```

```
# User Action Initialization
class AppBuilder(G4VUserActionInitialization):
    def Build(self):
        # setup PGA
        self.SetUserAction(medical beam)
```

```
global runaction
runaction = MyRunAction()
self.SetUserAction(runaction)
```

```
eventaction = EventCounter()
eventaction.SetCheckCounter(10000)
self.SetUserAction(eventaction)
```

<<< Geant4 Physics List simulation engine: FTFP_BERT

phantom_dose: Main

In [5]:

initialization

app_builder = AppBuilder()
gRunManager.SetUserInitialization(app_builder)

```
gRunManager.Initialize()
gRunManager.BeamOn(0)
```

--- G4CoupledTransportation is used

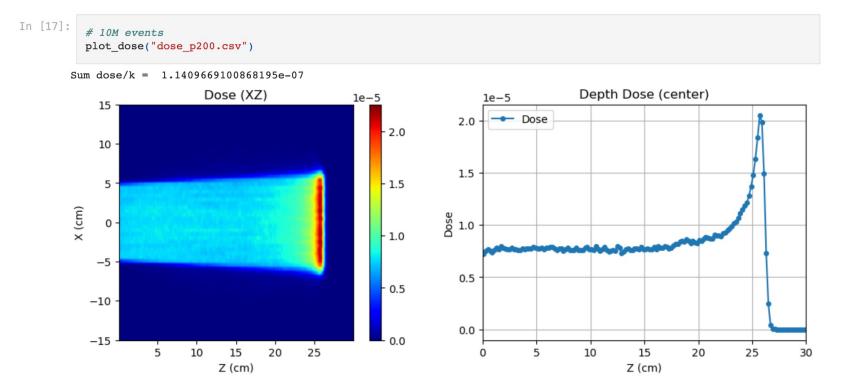
hInelastic FTFP_BERT : threshold between BERT and FTFP is over the interval for pions : 3 to 6 GeV for kaons : 3 to 6 GeV for proton : 3 to 6 GeV for neutron : 3 to 6 GeV

Adding tracking cuts for neutron TimeCut(ns)= 10000 KinEnergyCut(MeV)= 0

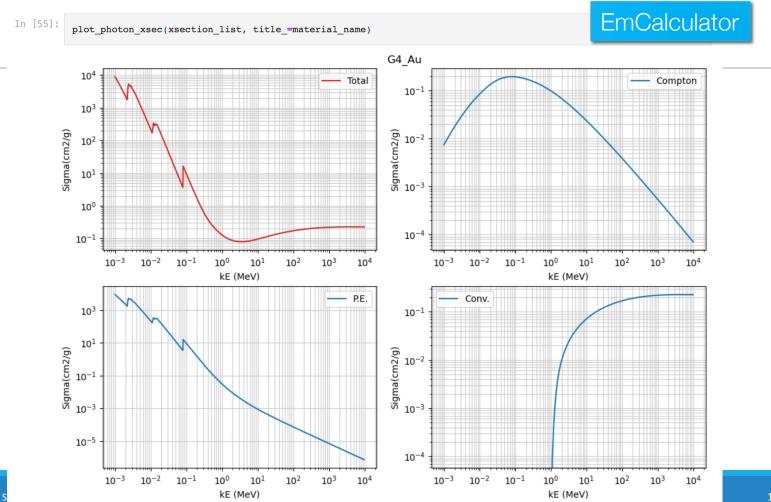

```
_____
```

=====	Electromagnetic	Physics	Paramete	ers ======
LPM effect enabled			1	
Enable creation and us	e of sampling tab	les	0	
Apply cuts on all EM p	rocesses		0	
Use general process			0	
Enable linear polarisa	tion for gamma		0	
Enable sampling of qua	ntum entanglement		0	
X-section factor for i	ntegral approach		0.8	
Min kinetic energy for	tables		100	eV
Max kinetic energy for	tables		100	TeV
Number of bins per dec	ade of a table		7	
Verbose level			1	
Verbose level for work	er thread		0	
Bremsstrahlung energy threshold above which				
primary e+- is added	to the list of s	econdary	7 100	TeV
Bremsstrahlung energy threshold above which primary				

phantom_dose: Electron dose


Electron 20 MeV

Command-line scoring



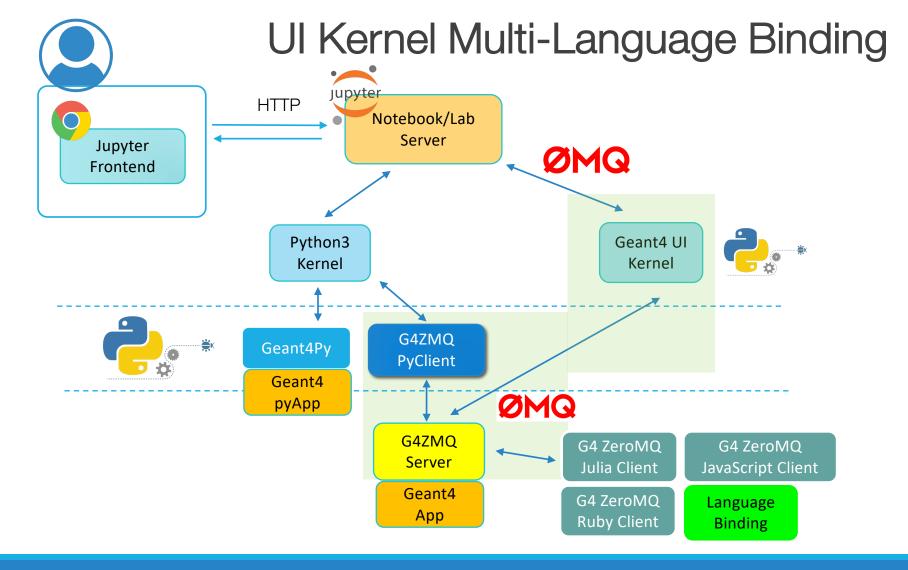
phantom_dose: Proton dose

Proton 200 MeV

emplot: Photon cross sections

5

Still some considerations are needed...


Python Objects

• Python variables are automatically managed, which means a local variable is automatically deleted on the Python side.

• This mechanism is different from objects allocated in C++. Some classes are taken care of as never-deleted objects in Geant4Py, but they are still imperfect.

• If there is a weird behavior (seg. fault), set the Python variable as global.

• An object of a user-inherited class in Python should be set as global.

Summary

Python binding tool was migrated to pybind11.

- There are some tricks for running Geant4 with Python.
 - o Memory management issue
 - o Library confliction
 - o Object management
- Examples of Jupyter sessions
 - Thin wrapping approach
 - Dose calculation and analysis
 - Plots of photon cross-sections and stopping powers
- Geant4 UI : multi-language binding capability with ZeroMQ