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ORANGE: Oak Ridge Advanced Nested Geometry

• Many nuclear engineering codes use “unbounded” 
surfaces and constructive solid geometry

• MCNP, KENO, earlier codes: >40 years of history

• Quadric surface cards, CSG cell cards

• Neutral particles or no magnetic fields


• 2017: Shift GPU code (part of Exascale Computing 
Project) uses simple but efficient surface-based 
reactor model (nested cylinders and arrays)


• 2020: New CPU geometry for Shift


• 2021: Initial GPU port for Celeritas


• 2023: GPU port integrated into Shift
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User-to-runtime construction
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Surface transformation and simplification
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CSG tree preprocessing: define shapes (1/5)

6

&

r ≤ 1 z ≤ 2

z ≤ −2

~

&

r ≤ 2 z ≤ 2

z ≤ −2

~

~

&

&

z ≤ 2

z ≤ −2

~Inner cyl

Outer cyl

Ring shape

Slab boundary

Legend

a < b

~

& “AND” logical operation

“NOT” logical operation

Surface definition



CSG tree preprocessing: deduplicate (2/5)
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CSG tree preprocessing: replace with truth (3/5)
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CSG tree preprocessing: apply logic (4/5)
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CSG tree preprocessing: simplify expression (5/5)
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y > b2
root

y < b1

Step 4: Recursively apply steps 2 and 3 until all bounding boxes are partitioned, resulting
in the tree structure below. Each inner node has edge conditions based on bounding planes.
Only the edge conditions for the root node are shown for brevity.

Acceleration: bounding interval hierarchy

• Inputs: volume bounding boxes

• Recursive partitioning scheme

• Tree traversal at initialization and 

surface crossing

• Low memory requirements


• Single-precision bounding boxes

• Tree nodes are ~16B
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Step 1: For each shape, 
find the axis-aligned
minimum bounding
box and its center.
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Current ORANGE/VecGeom performance for TestEM3

• VecGeom 1.x navigation on 
GPU known to be suboptimal


• Results from Summit

• 7 CPU Power9 cores vs 1 V100 GPU

• 1T uniform field

• 1300 × 10 GeV e- per event × 7 events

• Speedup relative to CPU VecGeom
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Small Modular Reactor problem

• Array of array of “pin cells”

• Water and uranium

• Neutron-only physics

• Shift MC transport code


• Frontier (AMD MI250x)

• Summit (Nvidia V100)
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SMR on Frontier (AMD MI250)

• Template metaprogramming 
“multiple dispatch” is faster 
(and more memory efficient) 
on AMD for this problem


• ORANGE is 30% slower than 
“reactor toolkit” geometry

• RTK is highly specialized and extremely 

limited

• Highlights performance/functionality 

tradeoff
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EMPIRE: advanced reactor geometry
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Summit (Nvidia V100 GPU)
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Optimization

• Comparisons between templated dispatch vs expanded universes

• Deduplication of local logic definitions to reduce memory bandwidth


• Accessing data with __ldg to improve caching


• Intersecting quadric surfaces with volume bounding boxes to 
precalculate “surface segment” BIH for surface intercept acceleration
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Detector geometry support

• Convex solids defined, all surfaces but toroid implemented

• Limited conglomerate/partial shapes (no polycone)

• Tracking simultaneously at multiple levels currently required

• Extremely limited safety calculation


• Vecgeom 1.x safety calculation so expensive it actually slows down field propagation

• Can limited-distance surface intercepts (especially using BIH) be fast enough that we don't 

need safety during field propagation?

• Can we replace MSC range limiting with rejection, modification to the true path, ...?

• Is there an efficient alternative to the Geant4 approximation of skipping MSC if the slowing 

down range is much less than safety?
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