
ORNL is managed by UT–Battelle, LLC for the US Department of Energy

ORANGE surface geometry progress

Seth R Johnson, Elliott Biondo, Tom Evans

Celeritas/ORANGE/Shift developers

Geant4 Collaboration Meeting

26 September, 2023



ORANGE: Oak Ridge Advanced Nested Geometry

• Many nuclear engineering codes use “unbounded” 
surfaces and constructive solid geometry

• MCNP, KENO, earlier codes: >40 years of history

• Quadric surface cards, CSG cell cards

• Neutral particles or no magnetic fields


• 2017: Shift GPU code (part of Exascale Computing 
Project) uses simple but efficient surface-based 
reactor model (nested cylinders and arrays)


• 2020: New CPU geometry for Shift


• 2021: Initial GPU port for Celeritas


• 2023: GPU port integrated into Shift
2 Image credit: Steve Skutnik (ORNL)



Methods 
Results 

Continuing work

3



User-to-runtime construction

4

GPU Runtime

Construction 
object model

CPU Diagnostics

Geant4 
volume 
stores

Shapes

Universes

Arrays

Transforms

Surfaces

Volumes

CSG 
node Metadata

Simplified
surfaces

CSG tree
BIH

DD4HEP

Transformed
surfaces

SCALE/
RTK/Triton

ORANGE



Surface transformation and simplification

5

PlanePlane
X/Y/Z

SphereSphere
Centered

Cyl X/Y/Z
Centered

Cyl
X/Y/Z

Cone
X/Y/Z

Simple
Quadric

General
Quadric

Can simplify to

Translates to

Transforms to

Examples: 
PlaneX→Plane→PlaneY

CylY→GQ→SQ→CylX→CCylX

GQ→SQ→SQ'→ConeX



CSG tree preprocessing: define shapes (1/5)

6

&

r ≤ 1 z ≤ 2

z ≤ −2

~

&

r ≤ 2 z ≤ 2

z ≤ −2

~

~

&

&

z ≤ 2

z ≤ −2

~Inner cyl

Outer cyl

Ring shape

Slab boundary

Legend

a < b

~

& “AND” logical operation

“NOT” logical operation

Surface definition



CSG tree preprocessing: deduplicate (2/5)

7

&

r ≤ 1 z ≤ 2

z ≤ −2

~

&~

&

&

Inner cyl

Outer cyl

Ring shape

Slab boundary

r ≤ 2

Legend

a < b

~

& “AND” logical operation

“NOT” logical operation

Surface definition



CSG tree preprocessing: replace with truth (3/5)

8

&

r ≤ 1 z ≤ 2

z ≤ −2

~

&~

&

Inner cyl

Outer cyl

Ring shape

Slab boundaryT

r ≤ 2

Legend

a < b

~

& “AND” logical operation

“NOT” logical operation

Surface definition

F

T

Always false

Always true



CSG tree preprocessing: apply logic (4/5)

9

&

r ≤ 1

z ≤ −2

&~

&

Inner cyl

Outer cyl

Ring shape

Slab boundary

T

F

T

T

z ≤ 2 T

r ≤ 2

Legend

a < b

~

& “AND” logical operation

“NOT” logical operation

Surface definition

F

T

Always false

Always true



CSG tree preprocessing: simplify expression (5/5)

10

r ≤ 1

z ≤ −2

~

&

Inner cyl

Outer cyl

Ring shape

Slab boundary

F

r ≤ 2

T

z ≤ 2 T



y > b2
root

y < b1

Step 4: Recursively apply steps 2 and 3 until all bounding boxes are partitioned, resulting
in the tree structure below. Each inner node has edge conditions based on bounding planes.
Only the edge conditions for the root node are shown for brevity.

Acceleration: bounding interval hierarchy

• Inputs: volume bounding boxes

• Recursive partitioning scheme

• Tree traversal at initialization and 

surface crossing

• Low memory requirements


• Single-precision bounding boxes

• Tree nodes are ~16B

11

Step 1: For each shape, 
find the axis-aligned
minimum bounding
box and its center.



Methods 
Results 

Continuing work

12



Current ORANGE/VecGeom performance for TestEM3

• VecGeom 1.x navigation on 
GPU known to be suboptimal


• Results from Summit

• 7 CPU Power9 cores vs 1 V100 GPU

• 1T uniform field

• 1300 × 10 GeV e- per event × 7 events

• Speedup relative to CPU VecGeom

13

GPUCPU

Ve
cG

eo
m

O
RA

N
G

E
1.0×

1.1× 28.6×

15.5×



Small Modular Reactor problem

• Array of array of “pin cells”

• Water and uranium

• Neutron-only physics

• Shift MC transport code


• Frontier (AMD MI250x)

• Summit (Nvidia V100)

14



SMR on Frontier (AMD MI250)

• Template metaprogramming 
“multiple dispatch” is faster 
(and more memory efficient) 
on AMD for this problem


• ORANGE is 30% slower than 
“reactor toolkit” geometry

• RTK is highly specialized and extremely 

limited

• Highlights performance/functionality 

tradeoff

15



EMPIRE: advanced reactor geometry

16

Summit (Nvidia V100 GPU)



Methods 
Results 

Continuing work

17



Optimization

• Comparisons between templated dispatch vs expanded universes

• Deduplication of local logic definitions to reduce memory bandwidth


• Accessing data with __ldg to improve caching


• Intersecting quadric surfaces with volume bounding boxes to 
precalculate “surface segment” BIH for surface intercept acceleration

18



Detector geometry support

• Convex solids defined, all surfaces but toroid implemented

• Limited conglomerate/partial shapes (no polycone)

• Tracking simultaneously at multiple levels currently required

• Extremely limited safety calculation


• Vecgeom 1.x safety calculation so expensive it actually slows down field propagation

• Can limited-distance surface intercepts (especially using BIH) be fast enough that we don't 

need safety during field propagation?

• Can we replace MSC range limiting with rejection, modification to the true path, ...?

• Is there an efficient alternative to the Geant4 approximation of skipping MSC if the slowing 

down range is much less than safety?

19



Acknowledgments

ECP: This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office 
of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, 
applications, and hardware technology, to support the nation’s exascale computing imperative.


OLCF: This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.


SciDAC: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific 
Computing Research and Office of High Energy Physics, Scientific Discovery through Advanced Computing (SciDAC) program.

20
https://github.com/celeritas-project/celeritas

https://github.com/celeritas-project/celeritas

