
In-memory Geometry Converter

Guilherme Lima

Geant4 Collaboration Meeting
September 25-29, 2023

FERMILAB-SLIDES-23-302-CSAID

2 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

In-memory Geant4 geometry converter

● What is it?
● How does it work?
● Validation details
● Status and plans

3 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Geometry converter: what is it?

● Converter developed within the context of Celeritas, which goal is to
allow a Geant4 job to offload some of the tracking to a GPU device
– see Seth Johnson’s talk for more details on the Celeritas project

● VecGeom (VECtor GEOMetry) was developed to promote SIMD-
vectorized algorithms. Since its algorithms could also run well on
GPGPUs, it became a natural choice for HEPsim-on-GPU prototypes
like Celeritas and AdePT.
– Celeritas uses VecGeom v1.x for now, at least while surface-based systems

(VecGeom 2.x and ORANGE) are being developed

● In order to offload some tracking to the GPU, the Geant4 geometry
needs to be made available in VecGeom.

4 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Converting geometry from Geant4 to VecGeom
● Temporary shortcut: Geant4 geometry → GDML file → VGDML

parsing → VecGeom geometry
– Not ideal: limited precision (ASCII representation of floats in the GDML file),

extra configuration steps and human error modifying GDML files.

● Ideal: in-memory Geant4-to-VecGeom geometry converter
– Started from a preliminary converter, developed by S.Wenzel, J.Apostolakis
et.al. as part of an effort to integrate VecGeom’s SIMD-accelerated navigation
into Geant4 (module G4VecGeomNav).

– We have adapted this (CPU-only) converter to the Celeritas (GPU) environment
● Implemented an overall scaling factor, to be multiplied by all length dimensions, in

analogy to VGDML parsing scale:
 Default units: Geant4 (mm) → Celeritas+VecGeom (cm)

● Added some (dummy) GPU interface required by GPU-enabled VecGeom classes.

https://gitlab.cern.ch/VecGeom/g4vecgeomnav

5 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Geometry converter: how does it work?
● Use the geometry hierarchy:

– Start from world volume → logical volume which holds placed daughters
(G4PhysVol = G4Solid + transf.matrix), each daughter → G4LogicalVolumes
which may hold more daughters, and so on…
Note: construction usually starts from the leaves (daughters) placed inside
mothers, which are placed on their mothers, and all the way up to the topmost
world volume

– Same hierarchy exists in VecGeom, with G4VSolid → UnplacedVolume,
G4LogicalVolume → LogicalVolume and G4PhysicalVolume → PlacedVolume

– Geometry object conversion is a recursive process:
it starts from the world volume, loops over its daughters, converting each
physVol→placedVol (e.g. converting its solid, and its transf.matrix) and its
logical volume to VecGeom → converting each placed daughter recursively…
until the whole geometry is fully converted.

6 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Validating the converted geometry
● Compare capacity calculations (from the upstream converter)

G4Solid::CubicVolume() vs. UnplacedVolume::Capacity()
→ fixes to default units (scaling) and parameter interpretation

● Compare printouts for VGDML vs. converted geometries
– Good for large-scale comparisons (e.g. CMS or Atlas-like detectors), dump all VecGeom

geometry details, including volume dimensions and placement matrices
 world_PV->PrintContent();

– Proof of concept: use a convenient GDML file with one of each shape available
→ significant cleanup for homogenized dimensions

→ Some VecGeom bugs found and fixed:
(1) Trap, Hype, Orb VGDML parsing ignoring length and angle units;
(2) Tet and BooleanVolume parameter dumping improved an homogenized;
(3) Specific interpretation of EllipticalCone parameters (independently developed shape codes)

→ Several shapes added (tessellated, extruded, ellipsoid, ellipticals, generic polycones, etc.)

● Final validation test: detailed tracking, comparing boundary-crossing coordinates

7 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Validation: original state of solids.gdml
● Evd: ROOT-based

visualization tool, part of the
celeritas infrastructure, was
used to produce this picture

● Original solids.gdml from a
Geant4 example, edited
→ at least one instance of
each shape supported by the
converter

● Limited number of shapes
supported

● Very unequal dimensions and
positioning / spacing

8 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Validation: current status of solids.gdml
● Added support to

several shapes
● Similar shape

dimensions and
adequate positioning
and spacing

● Detailed tracking,
comparing
coordinates of each
boundaries crossed

9 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Back-porting into G4VecGeomNav package
● A preliminary version of the geometry converter has been back-ported into the

G4VecGeomNav repository
– Includes several new shapes and bug fixes on the converter itself
– The converter validation unearthed a few bugs on VGDML parser, which are now fixed.
– Another MR, including extensions for GPU compatibility, has not been merged yet.

● More updates after MRs above (with Seth Johnson):
– More shapes added: reflected shapes, multi-union
– Further testing and functionality → more VecGeom fixes

→ Perfect agreement in CMS2018 tracking using converted VecGeom geometry, based on
detailed Celeritas vs. Geant4 tracking tests using ~9k 10GeV e- tracks x 7 starting seeds.

– Re-factored and cleaned up for cleaner code and better performance
– To be eventually back-ported to G4VecGeomNav module as well

10 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Geometry converter: status and plans

● In-memory Geant4-to-VecGeom geometry converter is now available
– From a preliminary prototype in G4VecGeomNav, further developed under the Celeritas

environment

– Debugged, fixed, validated and released: produces in-memory VecGeom model

– The VecGeom model is readily available for tracking in the GPU

– Has been (partly) ported back into the G4VecGeomNav module

● Still to be ported: reflected shapes, multi-union, simplifying refactoring

● Prospects:
– New: surface-based geometry approach, still under development – see previous talks

→ expected to be supported by this converter, no roadblocks anticipated

– More shapes to be added as needed (e.g. triggered by other complex GDML files used)

– TBD: long-term repository (requirements, dependencies, constraints)

11 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Backup slides

12 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Some code illustration

13 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Example code: simple G4Solid → UnplacedVolume conversions

14 2023 / 09 / 26 In-memory Geant4 to VecGeom Geometry Converter G. Lima

Ultimate validation: full tracking

● In the simple geometry of solids.gdml, send
tracks through several volumes, then perform full
tracking

● Repeat this tracking for VGDML and converted
geometries based on same input GDML file

● Compare detailed distances between volumes,
and volume IDs as they are traversed

 → Fix to GDML files: ensure length and angle
units always defined for all shapes (otherwise
different default units in Root (evd resizing) and
Geant4+Celeritas (tracing)

● The figures show the result of the celeritas
rasterizer, which sends thousands of parallel
tracks to “scan” the volumes as they are
traversed.

– All the tracking is fully performed on the GPU.
– Volume IDs are used for coloring each part of each

track, composing a “cut view” of the geometry

Solids.gdml – xz view at y = 125 (top shapes)

Solids.gdml – xy view at z=0

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

