Update Geometry & Transport Developments in 11.1, 11.2.beta; fixes; ongoing

John Apostolakis & Gabriele Cosmo (CERN EP-SFT)

for the Geometry & Transport WG

J. Apostolakis - Geometry & Transport WG update - G4 Collab.

Outline

- Features introduced in releases 11.1
 - VecGeom updates; Symplectic integrator; Coupled Transportation redesign
- VecGeom evolution (to version 2.0)
 - Simplification
- VecGeom: Development of surface-based modeler
- Integrated Quantum State Simulation (QSS2/3) 11.2 beta

VecGeom – updates in v1.2.1

- Improvements and optimisations to BVH acceleration (for CPU and GPU)
 - Added surface area heuristic for BVH construction
 - Added implementation of *marching cubes* algorithm
- Extended GDML reader to support all existing shapes
- Improved 'infrastructure'
 - Selection for enabling use made at configuration <u>https://gitlab.cern.ch/VecGeom/VecGeom/tree/v01.02.01</u>
 - Modernised Cmake usage and settings; switched to C++17 by default
 - Improved CUDA support in configuration and memory allocation
 - Bug fixes

11.1 developments: Navigation, Volumes, Transport

- Revised implementation of G4CoupledTransportation (Jonas Hahnfeld)
 - Inherits from G4Transportation; consolidated common variables and methods
 - Allowed G4Transportation to be base class for G4TransportationWithMsc, which combines transport with multiple scattering
 - Simplifies future maintenance challenge; it was already a concern.
- New class *G4TransportationParameters* for fine grain control of parameters for killing charged particles **looping** in a field
 - Optional, but it applies to all stable charged particles if created.
- New option to check for **overlaps** in parallel geometries
 - Through /geometry/run/test UI command
- Improved computation of surface area and cubic volume in specific solids

11.1 developments: Field

- Revised G4FieldManager to ensure robust behaviour of the integration
 - Keep epsilon_min/_max parameters for relative step accuracy between 'minimum and maximum accepted' values
 - Motive: poor accuracy of G4DormandPrince for epsilon > 0.001 (diverged by 10x)
- New 2nd order symplectic integration method *G4BorisDriver* *
 - Symplectic methods aim to conserve energy & phase space volume
 - This is first method in Geant4, and delivers low-order 'conservation' deviations are proportional to (d/R)^3, so step size must be kept low for accuracy
 - Note: Further work is required to finish development of the higher order (4th) methods needed by muon (g-2) and other accelerator-based use cases.

* GSoC 2022 project by Divyansh Tiwari

2023 Planned Developments *Geometry and Field*

In progress...
Achieved already in development releases

6 April 2023

G.Cosmo - Geant4 release 11.1.p01 & 2023 planned developments - kernel modules

Propagation in Magnetic Field – 11.2 beta

- Quantum State Simulation (QSS) method introduced
 - Alternative integration method, currently only for pure magnetic field
 - Second (QSS2) and third (QSS3) order methods
 - Provides Interpolation capability
- Refined control of very-long steps (typically in vacuum)
 - Prompted by challenge for drivers with interpolation

QSS

(*)

- Integrated into 11.2-beta
 - Second level text
 - Details

• ΔQ_i is the **quantum**

trajectories

• **Maximum deviation allowed** between x_i and q_i (error control)

b.

- Derived from the **accuracy** demanded by the user
- Higher order QSS methods (QSSn) follow a similar principle

Summary of results: QSS vs. DOPRI

Example ·	Meth od ÷	QSS accurad dQrel 	ey parameters dQmin 	% of Intersecti ons per G4 Step	QSS Substeps per G4 Step	User Time	System Time . (seg)	Real Time (seg)	Average Time per G4 Step (seg)	Speedup (QSS vs. DOPRI) Real Time
B2a	DOPRI	N/A	N/A	3.79%	N/A	2.052	0.175	2.614	1.3E-04	N/A
B2a	QSS	1.0E-02	1.0E-03	3.75%	10.191	2.067	0.176	2.654	1.3E-04	-1.53%
B2b	DOPRI	N/A	N/A	3.73%	N/A	2.081	0.178	2.651	1.3E-04	N/A
B2b	QSS	1.0E-02	1.0E-03	3.77%	10.209	2.107	0.178	2.680	1.3E-04	-1.09%
B4c	DOPRI	N/A	N/A	4.31%	N/A	1.623	0.180	2.202	1.1E-03	N/A
B4c	QSS	1.0E-02	1.0E-03	4.02%	2.517	1.603	0.182	2.170	2.1E-03	1.43%
B4d	DOPRI	N/A	N/A	4.31%	N/A	1.637	0.183	2.217	1.1E-03	N/A
B4d	QSS	1.0E-03	1.0E-04	4.19%	5.026	1.605	0.178	2.164	1.1E-03	2.39%
B5 SingleBeam	DOPRI	N/A	N/A	2.78%	N/A	3.442	0.257	4.004	1.1E-01	N/A
B5 SingleBeam	QSS	1.0E-03	1.0E-04	2.78%	1,494.940	3.259	0.245	3.841	1.1E-01	4.06%
Extended Field 01	DOPRI	N/A	N/A	6.51%	N/A	1.020	0.096	1.347	7.4E-04	N/A
Extended Field 01	QSS	1.0E-02	1.0E-03	5.99%	37.787	1.014	0.096	1.333	6.7E-04	1.03%

- Performance
 - Tuning accuracy parameters
 - Compared with Dormand-Prince

8

Improved control of long steps - issue

- Integrators with interpolation need to keep the full state for all intermediate substeps
 - G4InterpolationDriver<> creates & keeps state of 61 interpolation segments
 - QSS currently manages segments dynamically currently without a maximum number (to fix)
- These integrators provide 'dense' output used to intersect boundaries
 - No extra 'derivative' (field) evaluations needed just interpolation of existing values
- Field integration must treat steps with very large distance to next physics interaction
 - E.g. in vacuum more than 10⁴ meters in a HEP collider experiment with larger field O(tesla)

Improved control of long steps - changes

- G4PropagatorInField: turned hard coded values into parameters to control the longer steps
 - MaxStepSizeMultiplier is a multiplier for the 'diameter' of the current volume
 - MinBigDistance a minimum 'additional' distance
- Chosen small(er) default values:
 - MaxStepSizeMultiplier = 0.1 (originally 100)
 - LargestAcceptableStep = 100 * meter (originally was 1000.0 m)

2023 plans: Geometry & Navigation

- Separate safety computation and its state from navigator
 - Loose coupling of navigator in the computation of the safety distances from geometrical boundaries
 - Prototype is under testing (very small differences observed in full setups)
- Investigate simplification of touchables classes
 - Code optimisation: removed unused specialisations (of G4VTouchable) and inheritance
 - Now *G4VTouchable* is a typedef to *G4TouchableHistory*

VecGeom – 2023 developments overview

- Improve portability of SIMD-aware solids
- Simplified VecGeom eliminating unused, vector elements
 - Code simplification, removal of unused API/backends/specialisations
 - <u>Mini-workshop/sprint</u> at CERN in March to refine plans, deliver a first version
 - Refined and it is now the master branch of VecGeom: (no GPU support)
- Created a branch for 1.x patches (with old capabilities)
 - For use with existing Geant4 versions, e.g. in the next months, (and other use cases).
- Current master branch (2.0.0-rc1)
 - Removed vector APIs
 - Simplified Implementation Helpers.
 - Removed transformation specialization
 - Will make release (2.0) once GPU surface modeller is ready

VecGeom: new surface-based modeller

- Development of VecGeom surface-based navigation
- Motive: avoid thread divergence on GPU
 - Reduce the large disparity between time to intersect simple and complex solids, which causes divergence and suppresses GPU performance
- Approach is to 'decompose' each solid into bounded-surfaces
- Each bounded surface has an infinite surface and an 'outline'/imprint of the solid on it
 - A box becomes 6 surfaces, so more data but simpler intersections
 - A Tube becomes 3 surfaces, a Tube-section can be 4 or 5
 - A polygon will have N_{polygon} * M_{sections} + 2 => can be large
- Many solids now converted, some remain
 - Done: Boxes, Trd, Tubs, Cones, Boolean, polyhedral
 - ToDo: polycone, extruded

Current status

VecGeom: new navigation

- Relocation at surface uses pre-computed information
 - Deposited 'imprint' of every solid that is on the common surface
- Algorithm to disentangle Boolean expression
 - Non-recursive method developed
 - Promising first results on GPU: 2x faster for many components, though it is 2x slower for few pieces (looping over surfaces.)
- Preliminary performance (looping over volumes)
 - Safety computation: ~2x slower on CPU, ~2x faster on GPU
 - Propagation + relocation: ~2x faster on CPU, ~6x faster on GPU
 - Memory: ~1 kByte per "touchable" volume
- Optimisations of memory and pruning candidate surfaces
 - Using 'levels' of geometry full flattening => 3+ levels
 - First version of BVH optimisation
- Target is to run cms_2018 geometry working on GPU by end 2023
- Details in talk of Parallel Session 2B Andrei Gheata (earlier Tuesday)

Field Propagation – remaining goals

- Review accuracy of boundary crossing in field
 - ➤ ALICE and CMS requirement

Bug Fixes

J. Apostolakis - Geometry & Transport WG update - G4 Collab.

Patches in 11.1p01- Geometry

11.1.p01

- Solids/Boolean:
 - Fixed hang in G4MultiUnion, caused by oveflow of 'size-1' when 'size' value is zero
- Solids/Specific:
 - G4QuadrangularFacet: fixed references to triangles in the warning message issued when checking for collinear vertices
- Management:
 - G4LogicalVolume: use std::shared_ptr for handling visualization attributes. Ignore calls to SetVisAttributes() from worker threads
- Magnetic field:
 - Reduced printout for valid settings of epsilon_min/_max in G4FieldManager