
Toward Sub-Event Parallelism

Makoto Asai (JLab/SCT)
asai@jlab.org

Geant4 evolutions in parallelization

1. Sequential mode : original since Geant4 v1.0
－Single core (thread) does everything

2. Multithreaded event-level parallel mode : since Geant4 v10.0 (Dec.2013)
－Taking the advantage of independence of events, many cores (threads)

process events in parallel (event-level parallelism)
－Geometry / x-section tables are shared over threads

3. Task-based event-level parallel mode : since Geant4 v11.0 (Dec.2021)
－Decoupling task (event loop) from thread
－More flexible load-balancing

4. Task-based sub-event parallel mode : planned (Dec.2023~)
－Split an event into sub-events and task them separately
－Sub-event :

• Sub-group of primary tracks, or
• Group of tracks getting into a particular detector component
－ Suitable for heterogeneous hybrid hardware

• N.B. We made these evolutions without forcing the user to migrate
－Except for using the new functionalities

2Toward Sub-Event Parallelism - M. Asai

Geant4 as a detector simulation engine

Toward Sub-Event Parallelism - M. Asai 3

Process
- physics
- field integration
- volume boundary

Initialization
- geometry
- x-section

Run

Event

Track

Step

Detector

Stack

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Sequential mode

Toward Sub-Event Parallelism - M. Asai 4

main()

G4RunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Event-level parallel mode (thread / task)

Toward Sub-Event Parallelism - M. Asai 5

Process
- physics
- field integration
- volume boundary

Initialization
- geometry
- x-section Run

Event

Track

Step

Detector

Stack

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Worker Thread / Task

Run

Multithreaded mode

Toward Sub-Event Parallelism - M. Asai 6

main()

G4MTRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0 Worker thread #1 Worker thread #2

Master thread

Task-based parallel mode

Toward Sub-Event Parallelism - M. Asai 7

main()

G4TaskingRunManager G4Run

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread #0

Master thread

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

G4WorkerRunManager

G4EventManager

G4TrackingManager

G4SteppingManager

G4Run

G4Event

G4Track

G4Step

Worker thread
Worker thread

Worker thread

Task

Task-based sub-event parallel mode (Phase I)

8

Process
- physics
- field
- volume

Initialization
- geometry
- x-section

Run

Event

Track

Step

Detector

Stack

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Stack

Sorter /
Merger

Sub-event
Task

In Phase I, all tasks have the same
physics processes and see the same
detector geometry.

Stack
Stack

Toward Sub-Event Parallelism - M. Asai

Task-based sub-event parallel mode (Phase II)

9

Initialization
- geometry
- x-section

Run

Event

MC Event Gen
(Primary event)

Simulation output
- detector hits
- Monte Carlo truth
- histograms

Stack

Sorter /
Merger

Dedicated
Processes
- physics
- field
- volume

Track

Step

Detector

Stack

Sub-event
Task

In Phase II, each task has only the
necessary physics processes and sees
the limited detector geometry that
are necessary for that particular
task.
• Essential for heterogeneous

simulation

Stack
Stack

Toward Sub-Event Parallelism - M. Asai

Sub-event parallel mode

Toward Sub-Event Parallelism - M. Asai 10

main()

G4SEPRunManager G4Run

Master thread

Worker thread
Worker thread

Worker thread

G4EventManager G4Event

A Tracking Manager

A Stepping Manager

A Track

A Step

Sub-event parallel mode

Toward Sub-Event Parallelism - M. Asai 11

main()

G4SEPRunManager G4Run

Master thread

Worker thread
Worker thread

Worker thread

G4EventManager G4Event

A Tracking Manager

A Stepping Manager

A Track

A Step

A Tracking Manager

A Stepping Manager

G4Event

A Track

A Step

G4EventManager

Task

G4SEPWorkerRunManager

A Tracking Manager

A Stepping Manager

G4Event

A Track

A Step

G4EventManager

Task

G4SEPWorkerRunManager

G4EventManager

A Tracking Manager

A Stepping Manager

G4Event

A Track

A Step

G4SEPWorkerRunManager

Task

Top-level scenario
• In the master thread, in addition to the ordinary stacks (Urgent, Waiting,

(Waiting_1, …)), user may add stacks for each kind of sub-event tasks
(G4SubEventTrackStack).
－e.g. optical photons, EM particles in calorimeter, …

• A G4SubEventTrackStack stacks tracks of specified type, and once the number
of track becomes the user-specified threshold, it packs them into G4SubEvent.

• G4Event keeps pointers of G4SubEvent objects and keep record of them.
• WorkerRunManager thread pulls a sub-event of its type from the master

RunManager.
• Worker thread does not have PrimaryGeneratorAction but use

G4EventManager::ProcessOneEvent(G4TrackVector*) to process tracks
provided in G4SubEvent.
－G4EventManager of the worker thread does the job just the same as what it

does in the Tasking mode
－It stores all the necessary outcomes (hits, scores, trajectories, etc.) into the

local G4Event object.
• WorkerRunManager pushes the resulting G4Event object back to the master

RunManager.

12Toward Sub-Event Parallelism - M. Asai

Object ownership

• Given we use G4Allocator, we need clean management of
Who-Owns-What, Who-Deletes-What and -When.
－Objects instantiated by the master thread must be deleted by the master.

Objects instantiated by the worker thread must be deleted by the
responsible worker.

• G4SubEvent object and tracks in it must be deleted by the master after the
worker refers/uses them.
－Tracks must be copied.

• G4Event created by a worker thread and objects contained by it (hits, scores,
trajectories) must be deleted by the worker after letting the master thread
copy/merge the contents.
－Scores – merged by Geant4 kernel classes
－Trajectories – optional : copied by Clone() method and stored into the

master G4Event
－Hits – need += operator of HitsCollection implemented by the user

• tracker hits : copy and insert
• calorimeter hits : add

Toward Sub-Event Parallelism - M. Asai 13

Sub-event parallelism in Geant4

• Sub-event parallelism will be introduced without forcing user’s code to migrate.
－Sequential, threading and tasking modes will work fine as they do now.

• To use sub-event parallelism (for Phase-I)
－Use a newly introducing G4SEPRunManager and

G4SEPWorkerRunManager for sub-event parallelism
－Define what sort of tracks (sub-event) should be sent to which worker

thread
auto rm = G4RunManager::GetRunManager()
rm->RegisterSubEventType(1,1000);
rm->SetDefaultClassification

(G4Electron::Definition(),fSubEvent_1);
rm->SetDefaultClassification

(G4Positron::Definition(),fSubEvent_1);
rm->SetDefaultClassification

(G4Gamma::Definition(),fSubEvent_1);
rm->RegisterSubEventType(2,10000);
rm->SetDefaultClassification

(G4OpticalPhoton::Definition(),fSubEvent_2);

Toward Sub-Event Parallelism - M. Asai 14

Current status

• Most of the changes except G4SEPRunManager and
G4SEPWorkerRunManager are in the repository.
－Remaining two classes will come in a couple of weeks.

• Note:
－When sub-event parallelism is used, UserEventAction::EndOfEventAction() is

invoked by the master RunManager instead of EventManager.
• As, some sub-events may still be in process in worker threads after the

processing of an event in the master thread is completed.
－Currently, visualization is considered only with master thread.

• We don’t know yet if we can visualize something from worker threads.
• Need discussion with Vis WG next year.

Toward Sub-Event Parallelism - M. Asai 15

By the way, a side topic

• The development of photon entanglement process requires
first-in-first-out stack.
－To flip two tracks after letting each of them make several steps and suspended.
－Ordinary stack (last-in-first-out) doesn’t do this.

• Once you suspend a track, it is popped up from the stack prior to the other
track that had already been suspended.

• You can add one more waiting stack and send the suspended track to the second
waiting stack.
－Once the urgent stack becomes empty, tracks in the first (default) waiting stack are

sent to the urgent stack, and tracks in the second waiting stack are sent to the first
waiting stack. So, you basically have first-in-first-out stack.

auto rm = G4RunManager::GetRunManager();
rm->SetNumberOfAdditionalWaitingStacks(1);
rm->SetDefaultClassification(fSuspend, fWaiting_1);

• This same trick may be used for R-hadron, etc.
• Note: this setting is thread-local.

Toward Sub-Event Parallelism - M. Asai 16

Toward the Phase-II sub-event parallelism

• In sub-event parallelism Phase-II
－G4SEPWorkerRunManager is extensible to accommodate more than one

kinds of sub-events, and they should be instantiated in
G4UserThreadInitialization.
－Physics list and/or detector construction dedicated to each task if

appropriate.
• For example, with G4HepEM, AdePT, Celeritas, Opticks, etc.

• Each type of WorkerThread may have its unique PhysicsList
－For example, if a worker is for G4HepEM, it does not need any other

particles rather than EM particles, and physics processes assigned to it
may not necessarily be the same as those in the master thread.

• Each type of WorkerThread may have its unique geometry
－For example, if a worker is for Opticks, it does not need any detailed

geometry of the detector except the scintillator / crystal and light guides.

Toward Sub-Event Parallelism - M. Asai 17

• Parallel world

• Layered mass geometry

• Real-world scoring and scoring probe

• Histogram filling through a scorer

Contents

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 18

Define scorer to a tracking volume

• Define a scorer to a logical volume.
/score/create/realWorldLogVol <LV_name> <anc_lvl>

• One can define arbitrary scoring quantities and filters.
－Same recipe as scoring mesh.
－Scores are automatically merged over worker threads.
－Drawing is not yet supported.

• All physical volumes that share the same <LV_name> have the same
primitive scorers but score separately.
－Copy number of the physical volume is the index.
－If the physical volume is placed only once, but its (grand-)mother

volume is replicated, use the <anc_lvl> parameter to indicate the
ancestor level where the copy number should be taken.

CopyNo
0

Copy No
1

CopyNo
0

Copy No
1

CopyNo
0

Copy No
1

Copy No 0 Copy No 1 Copy No 2

Scorer

Index to be taken
from upper
geometry hierarchy

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 19

Command-based real-world scorer

• Do not use this
/score/create/realWorldLogVol command
to a mother logical volume.
－For example of this exampleB4,

“Layer” is fully filled with ”Gap” and
“Abso” daughter volumes. You won’t
see any energy deposition in “Layer”
volume.

/score/create/realWorldLogVol Gap 1
/score/quantity/energyDeposit eDep MeV
/score/quantity/trackLength sLen mm
/score/filter/charged cFilter
/score/create/realWorldLogVol Abso 1
/score/quantity/energyDeposit eDep MeV
/score/quantity/trackLength sLen mm
/score/filter/charged cFilter
/score/close

exampleB4a

World
Calorimeter : placement

Layer : replica
Gap : placement
Abso : placement

If this is not set, given “Gap” and
“Abso” are placed with copy number
0, energy deposition and track length
are accumulated for all layers.

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 20

Command-based probe scorer

• User may locate scoring “probes”
at arbitrary locations. A “probe” is a
virtual cube, to which any Geant4
primitive scorers could be assigned.

• Given these probes are located in
an artificial “parallel world”, probes
may overlap to the volumes defined
in the mass geometry.

• If probes are located more than
once, all probes have the same
scorers but score individually.

• In addition, the user may optionally set a material to the probe. Once a
material is set to the probe, it overwrites the material(s) defined in the
mass geometry when a track enters the probe cube.
－Because of this overwriting, physics quantities that depend on material

or density, e.g. energy deposition, would be measured accord to the
specified material
－You are alternating material, i.e. simulation results are affected. Make

probes small and as few as needed.

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 21

Scoring probe

/score/create/probe Probes 5. cm
/score/probe/material G4_WATER
/score/probe/locate 0. 0. 0. cm
/score/probe/locate 25. 0. 0. cm

/score/probe/locate 0. 25. 0. cm
/score/probe/locate 0. 0. 25. cm
/score/quantity/energyDeposit eDep MeV

/score/quantity/doseDeposit dose mGy
/score/quantity/volumeFlux volFlx
/score/quantity/volumeFlux protonFlux
/score/filter/particle protonFilter proton

/score/close Note: To visualize the probes defined in a parallel
world, the following command is required.

/vis/drawVolume worlds

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 22

• Parallel world

• Layered mass geometry

• Real-world scoring and scoring probe

• Histogram filling through a scorer

Contents

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 23

1-D histogram directly filled by a primitive scorer

• Through a newly introduced interface class (G4TScoreHistFiller) a primitive
scorer can directly fill a 1-D histogram defined by G4Analysis.
－Track-by-track or step-by-step filling allows command-based histogram such as

energy spectrum.

• G4TScoreHistFiller template class must be instantiated in the user’s code
with his/her choice of analysis data format.

• Primitive scorer must be defined in advance to setting a histogram.
• Histogram must be defined through /analysis/h1/create command in

advance to setting it to a primitive scorer.
• This functionality is available only for primitive scorers defined in real-world

scorer or probe scorer.
－Not available for box or cylindrical mesh scorer due to memory consumption

concern.

#include “G4AnalysisManager.hh”
#include “G4TScoreHistFiller.hh”
auto analysisManager = G4AnalysisManager::Instance();
analysisManager->SetDefaultFileType(“root”);
auto histFiller = new G4TScoreHistFiller<G4AnalysisManager>;

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 24

1-D histogram directly filled by a primitive scorer

/score/create/probe Probes 5. cm
/score/probe/locate 0. 0. 0. cm
/score/quantity/volumeFlux volFlux
/score/quantity/volumeFlux protonFlux

/score/filter/particle protonFilter proton
/score/close
/analysis/h1/create volFlux Probes_volFlux

100 0.01 2000. MeV ! log
/score/fill1D 1 Probes volFlux
/analysis/h1/create protonFlux Probes_protonFlux

100 0.01 2000. MeV ! log

/score/fill1D 2 Probes protonFlux

N.B. If probe is placed more than once, fill1D
command should be called to each copyNo.

/score/fill1D 1 Probes volFlux 0

Parallel World and Additional Scoring Functionalities - M. Asai (JLab) 25

Questions?

Toward Sub-Event Parallelism - M. Asai 26

Monte Carlo simulation on GPU

• It is hopeless to port the entire Geant4 to a single process on GPU.
－Each GPU process should have strictly limited scope.

• Physics coverage, particle type, geometry/material
• E.g. optical photon transport in Cerenkov detector, EM shower in

calorimeter (w/o back splash or punch through)
• A task on GPU should behave like a blackhole.
－The darker a task is, the better performance it has.

• “Darker” means “less output”.
－Individual step/track/trajectory should not be taken out from a task.

• Reshuffling tracks over tasks is no a good thing to do.
－Minimize output information.

• E.g. transferring output is a serious bottleneck, even for shared
memory.

• Sub-event parallelism is the only solution that allows various tasks of different
processes running on GPUs in parallel while conducting the full event
simulation.

27Toward Sub-Event Parallelism - M. Asai

