
Thoughts on parallelisation of
initialisation phase and open issues

Vladimir Ivantchenko

28th Geant4 Collaboration Meeting

25–29 Sept 2023 Hokkaido University, Japan

Outline

• Use cases and the problem

• Current initialization of physics

• Improvements for Geant4 11.2

• Comments for parallelization of initialization

9/26/2023 2

The problem and use cases

• If Geant4 is used in supercomputers with many nodes the longest initialization is performed in the
master thread
• All other threads should wait to start

• Traditional Geant4 simulation
• May be sequential or muti-treaded
• Physics is initialized when geometry is fully initialized

• List of particle, list of elements and materials are already defined
• In Geant4 tests often many runs are executed in one job, materials are changed between runs

• It is the main use case tested within Geant4 everyday

• Geant4e – backward propagation of particles
• Used, at least, in CMS
• Geant4 geometry and magnetic field are initialized
• RunManager is not used – initialization of EM physics is triggered by Geant4e

• There is no master thread
• There is no hadronic physics and no cuts

• Usage of only limited number of components of Geant4
• Unit tests of Geant4 – RunManager is not used, usually sequential
• In CMS FastSim may use FTFP model as an alternative – no geometry, no RunManager

9/26/2023 3

Initialisation of EM physics
• Initialization of EM physics

• PreparePhysicsTable(const G4ParticleDefinition&)
• BuildPhysicsTable(const G4ParticleDefinition&)

• Two methods are needed to retrieve tables from data files or alternatively to build from scratch

• Each EM process triggers initialization of models belong to this process
• Data structure may be created per material_cut_couple, or per element, or per material
• Some processes compute numerical integrals, another compute cross sections and other values using formulas and/or

G4LEDATA
• We usually upload of data for materials/elements used in geometry
• For a new run in the same job, we usually increment tables, not build from scratch

• If extra material is added the previous is not deleted between runs

• In EM physics several processes used by each particle
• Processes may be shared between particles
• Models may be shared between particles/processes

• In order do not overdo the same work data structures are filled for the 1st particle

• Energy loss processes for a given particle are combined
• dEdx, range, and inverse range tables are prepared

• Process and model EM data are shared between threads
• Normally fully initialized in the master thread but may be use cases when lazy initialization required

• Because of a probability of lazy initialization other threads are locked during initialization

9/26/2023 4

Initialisation of hadronic physics
• Initialization of hadronic physics

• PreparePhysicsTable(const G4ParticleDefinition&) used minimally
• BuildPhysicsTable(const G4ParticleDefinition&) is the main initialization method

• Triggered initialization of models belong to the process
• Triggered initialization of cross sections belong to the processes
• In some models, significant data structures are filled
• Models and cross sections may be shared between processes

• Data are retrieved from data tables or computed
• G4PARTICLEXSDATA – uploaded for all atoms involved in run, shared between threads
• In the current G4NEUTRONHPDATA lazy initialization is used

• In the new approach, which is in progress the same method as in G4PARTICLEXSDATA will be used, at least, for cross sections

• Nuclear level data may be uploaded at initialization
• Max atomic number can be defined (the default Z=30)

• This is needed to avoid uploading of all high-Z elements data if not needed

• Lazy initialization for remaining data

• Lazy initialization for radioactive decay data
• This data belong to projectile and not to target, so not possible to know in advance what to initialize

• When any data file is uploaded all other threads are locked
• Data structure may be per element and/or per isotope

9/26/2023 5

Improvements for Geant4 11.2
• Since 10.X series of Geant4 the main method to provide initialization of shared data was to use a check if it is

master or worker
• IsMaster() method in EM classes
• This is OK for “normal” use of Geant4 physics
• Not working if master thread is not used

• Bug report #2546
• Was confirmed also in G4HepEm
• Order of initialization of static data may lead to crash
• Extra model object instantiated in master thread may destroy initialisation

• In 11.1 a new approach was introduced
• IsFirst check – if some data is not filled this class get flag isFirst

• In 11.2 more clean approach is proposed (like one used in CMSSW)
• static std::once_flag applyOnce
• ……..
• std::call_once(applyOnce, [this] () { isInitilyzer = true; });
• This construction defines that given class object is responsible to initialize static data
• It is important that data structure does not delete in a model destructor but centrally end of job

9/26/2023 6

Is it possible to parallelize initialization?

• The 1st answer: likely impossible
• It is complicate to make in a simple but clean way
• Different EM physics classes share data
• Different hadronic classes also share data
• Data structures not always known in advance, because uploaded data size is not

known in all cases
• Better not destroying Geant4

• It seems that substitution of isMaster() checks by other constructions is the
first task for both EM and hadronics
• This would prevent from situations like one described in #2546
• It would be useful for several use cases
• Does not introduce parallel initialisation

9/26/2023 7

How to parallelize initialization?

• The 2nd answer: it is not completely excluded
• It is possible to allocate memory for data structures for some processes/models

before the start of computation of cross sections and probabilities
• By material_cuts_couple in EM

• By elements and/or isotopes for hadronic

• The memory for uploaded data from files not known in advance in all cases
• There may be different files even user custom file

• It seems to be much more difficult to perform parallel upload and allocate memory efficiently

• Computations for given Z, A, or material_cut_couple are independent, so potentially
may be performed in parallel
• It is possible if a loop may be parallelized

• This may be introduced in models one by one where possible/necessary

9/26/2023 8

No conclusion – the question is opened

9/26/2023 9

	Slide 1: Thoughts on parallelisation of initialisation phase and open issues
	Slide 2: Outline
	Slide 3: The problem and use cases
	Slide 4: Initialisation of EM physics
	Slide 5: Initialisation of hadronic physics
	Slide 6: Improvements for Geant4 11.2
	Slide 7: Is it possible to parallelize initialization?
	Slide 8: How to parallelize initialization?
	Slide 9: No conclusion – the question is opened

