

Computing Performance Results and Issues: ATLAS

28th Geant4 Collaboration Meeting

Hokkaido University, Sapporo 25-29 September 2023

Marilena Bandieramonte (University of Pittsburgh)

Geant4 Simulation in ATLAS

- For RUN3 Monte Carlo production ATLAS uses:
 - Geant4 10.6.patch03.atlas07
 - It includes:
 - G4AtlasRK4 stepper
 - G4MagInt_Driver patch to reduce differences w.r.t. G4IntegrationDriver
 - G4GammaGeneralProcess patch from Geant4-10.7.2
 - Woodcock Tracking
- We are working on a (2) new patch(es):
 - Geant4 10.6.patch03.atlas(08)09
 - c++20, gcc13 support
 - Make Woodcock tracking more robust against corner cases
 - Fix for some rare crashes in hadronic physics (G4AntiNeutron by default unstable)

Geant4 Simulation Optimizations for Run3

New Improvements* that are used in production in the Run3 MC campaigns

*since last year <u>presentation</u>, details in backup slides

Full Geant4 Simulation for Run3

 MC campaign for start of Run3 (mc21) already >30% faster than mc16.

- EM range cuts
- Neutron and Photon Russian Roulette
- New EMEC Slices variant
- BigLibrary
- G4GammaGeneralProcess
- Magnetic Field tailored switch-off

- In addition MC campaign for Run3 (mc23) features:
 - VecGeom: new vectorized geometry library, we replace only *polycons*, cones and tubes (2-3%)
 - Frozen Showers update (tuned to the new Geant4 version)
 - Woodcock tracking [1]: smart tracking for highly segmented detectors (~20%)

VecGeom: vectorized Geometry

New and optimised implementation of geometrical shapes, designed to take advantage of explicit and implicit vectorisation:

- we replace only polycons, cones and tubes

measured on 500 ttbar events in the Atlas software framework (Athena)

VECGEOM ALONE

BNL Cluster, 1000 Jobs	Walltime,s	sigma	Speedup	Job ID
100 tt-bar events/job			CPU time	
Athena 22.0.47 (baseline)	280	22.8	-	<u>27857092</u>
Athena 22.0.63 with VecGeom (no BigLibrary)	263	23	-6.1%	<u>3137986</u> <u>1</u>
Athena 22.0.63 with VecGeom (no BigLibrary) +Run3Opt	195	15.9	-30.4%	<u>31379871</u>

VECGEOM ON TOP OF THE BIG LIBRARY

BNL Cluster, 1000 Jobs	Walltime,s	sigma	Speedup	Job ID
100 tt-bar events/job			CPU time	
Athena 22.0.47 (baseline)	280	22.8	-	<u>27857092</u>
Athena 22.0.67 "out the box" (BigLibrary only)	270	21.3	-3.6%	<u>31366397</u>
Athena 22.0.67 "out the box" (BigLibrary only) +Run3Opt	189	15.7	-32.5%	<u>31366406</u>
Athena 23.0.7 "out the box" (BigLibrary + VecGeom)	252	21.6	-10%	<u>31352919</u>
Athena 23.0.7 "out the box" (BigLibrary + VecGeom)+Run3Opt	185	15.8	-33.9%	<u>3135293</u> <u>2</u>

🕻 P F R Ben Morgan

Woodcock tracking

- Reduce the number of steps for gammas in highly segmented detectors (e.g. EMEC), where the geometric boundaries limit the step, rather than the physics
- Perform the transport in a geometry with no-boundaries made of the densest material (i.e. Pb)
- The interaction probability is proportional to the cross-section ratio between the real material and the "fake" one
- Integrated in <u>FullSimLight</u> and in Athena
 - Shows a ~10-15% performance gain when using *Woodcock-tracking* of gamma photons in the EMEC detector region on top of the gain already provided by the *Gamma-general* process
 - Full physics validation successful and in production for Run3!

		FTFP_BERT_ATL	_WDCK-Gamr	naGeneral	$_WDCK Woodcock(EMEC)$		
γ		3.054e + 05	3.06e+05		3.062e+05		
#secondary	e^-	6.240e + 05	$6.204 \mathrm{e}{+05}$		6.201e + 05		
	e^+	2.186e + 04	2.19e+04		2.193e+04		
#stops	charged	3.548e + 06	3.548e+06		3.550e+06		
#steps	neutral	$8.501\mathrm{e}{+06}$	8.464e + 06		4.215e+06		
FTFP_B	ERT_ATL	$\ $ _WDCK- $Gamn$	- <i>GammaGeneral</i> _W		K Woodcock(EMEC)		
ba	base line				[2 - 4] %		[10 - 14] %

Simplified sampling calorimeter: 50 layers of [2.3 mm Pb + 5.7 mm lAr]

Ongoing effort

Targeting Run3 MC reprocessing, or future Run3 MC campaigns

LTO/PGO and auto-FDO

- **PGO** (Profile Guided Optimization) and **FDO** (Feedback-Directed Optimization) are both based on the instrumentation of the binary
- **Auto-FDO** (Automatic Feedback-Directed Optimization) is a system to simplify the deployment of feedback-directed optimization (FDO).
 - The system works by sampling hardware performance monitors on production machines and using those profiles to guide optimization
- First test running FullSimLight with LTO enabled:
 - full static linking plus LTO yields a significant speed up
 - dynamic loading plus LTO doesn't achieve the same speedup, but a ~4-5% decrease in runtime is observable

High-η particle rejection (ISF particle killer)

Goal: Kill primary particles generating secondaries close to the beam-pipe at 5-6 m

- Many particles in the collision are at high $|\eta|$ (no ID hits) with little energy compared to the calorimeter noise.
- The goal is to kill these particles as we expect that their secondaries will never cause any energy in the calorimeters or a muon hit
- Approach:
 - generate a large sample of single particles with $~4,5 < |\eta| < 6$ and different energies
 - map out which eta/energy combinations can produce a relevant signal
 - drop the rest directly with a new ISF (Integrated Simulation Framework) particle filter.
- Technical studies on how to classify particles as significant or not are ongoing.

Dongwon Kim

GPU-friendly EMEC implementation

Description of the EMEC with Geant4/VecGeom standard shapes:

Advantages:

- Possible speedup in VecGeom on CPU making use of internal vectorisation
- Possibility for the ATLAS geometry to be standard and GPU-friendly

STATUS:

- Implemented by using G4GenericTrap
- The CPU consumption of various EMEC implementations was measured using FullSimLight
- Preliminary benchmarks showed that a speedup of ~2 is achievable!
 - This work lead to the discovery of a bug in the calculation of the Safety distance of the G4GenericTrap (work is ongoing to fix it)
- Integration in Athena to be started soon and physics validation will follow

Using Adept/Celeritas in FullSimLight/TileCal

11

- Initial work earlier this year by Julien/Seth to integrate **Celeritas** offload/transport in the Tile calorimeter test beam simulation validation application:
 - <u>https://github.com/celeritas-project/atlas-tilecal-integration</u>
 - From: <u>https://github.com/lopezzot/ATLTileCalTB</u>
 - Now also runnable through FullSimLight as a plugin, albeit currently built using a fork of GeoModel:
 - <u>https://github.com/celeritas-project/GeoModel</u>
- **AdePT** example of the Tile calorimeter test beam simulation implemented by Davide:
 - <u>https://indico.cern.ch/event/1215829/contributions/5306569/</u>
 - Now beginning work to implement this as a FullSimLight plugin as has been done for Celeritas

G4HepEM library integration

<u>**G4HepEM</u> library** is a new compact Geant4 EM library, from *Mihaly* Novak, Jonas Hanfeld, Benjamin Morgan</u>

- Optimized to be used for HEP electromagnetic showers development and transport
 - more compact and GPU-friendly
 - It provides significant speedup w.r.t the general Geant4 EM library.

Integrated in FullSimLight first and first tests in Athena

	Physics List	Specialised Tracking	difference
G4NativeEm	2889 s	2747 s	-4.9%
G4HepEm	2847 s	2660 s	-6.6%
difference	-1.5 %	-3.2 %	-7.9%

Reference

1 ‰ agreement between the native Geant4 and G4HepEM Simulation

B. Wynne, M. Novak, J. Apostolakis

M. Bandieramonte, University of Pittsburgh

Benchmarks

- The ATLAS EMEC (EM EndCap calorimeter), is the dominant contribution to ATLAS Full Simulation
- Following are the Inner Detector (Tracker) and the EM Barrel

Subdetector CPU fraction for 50 ttbar events MC16 Candidate Release

- In mc23c we have a clear reduction of the fraction of time spent in the EMEC (from 47% to 38%), but it is still the dominant contribution
- Following are still the Inner detector (Tracker) and the EM barrel

 Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Improvements over different campaigns

- mc20, MC reprocessing campaign for Run2:

- TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
- Frozen Showers

mc21, MC campaign for start of Run3: (in addition to mc20)

- EM range cuts: expect to reduce the n. of low energy electrons
- PRR: expect to reduce the n. of tracked photons
- NRR: expect to reduce the n. of tracked neutrons
- EMEC slices: improve the CPU time in the EMEC
- Big Library: improve overall the Full Simulation Time
- MagField Off: improve transport in magField
- G4GammaGeneralProcess: improve time spent to transport gammas
- BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

M. Bandieramonte, University of Pittsburgh

 Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Changes affecting all subsystems

- mc20, MC reprocessing campaign for Run2:
 - TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
 - Frozen Showers

mc21a, MC campaign for start of Run3: (in addition to mc20)

- EM range cuts: expect to reduce the n. of low energy electrons
- PRR: expect to reduce the n. of tracked photons
- NRR: expect to reduce the n. of tracked neutrons
- EMEC slices: improve the CPU time in the EMEC
- Big Library: improve overall the Full Simulation Time
- MagField Off: improve transport in magField
- G4GammaGeneralProcess: improve time spent to transport gammas
- BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

 Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Changes impacting mainly EM calorimeters

- mc20, MC reprocessing campaign for Run2:
 - TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
 - Frozen Showers

mc21a, MC campaign for start of Run3: (in addition to mc20)

- EM range cuts: expect to reduce the n. of low energy electrons
- PRR: expect to reduce the n. of tracked photons
- NRR: expect to reduce the n. of tracked neutrons
- EMEC slices: improve the CPU time in the EMEC
- Big Library: improve overall the Full Simulation Time
- MagField Off: improve transport in magField
- G4GammaGeneralProcess: improve time spent to transport gammas
- BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

 Looking from a different perspective (time spent per sub-detector and per particle type) gives us more insights:

Changes targeting the EMEC

- mc20, MC reprocessing campaign for Run2:
 - TRT range cut (sets the range cut for e-/e+ in the TRT volumes filled with Xenon)
 - Frozen Showers
 - mc21a, MC campaign for start of Run3: (in addition to mc20)
 - EM range cuts: expect to reduce the n. of low energy electrons
 - PRR: expect to reduce the n. of tracked photons
 - NRR: expect to reduce the n. of tracked neutrons
 - EMEC slices: improve the CPU time in the EMEC
 - Big Library: improve overall the Full Simulation Time
 - MagField Off: improve transport in magField
 - G4GammaGeneralProcess: improve time spent to transport gammas
 - BeamPipe killer: kills particles at eta>5.5, that do not make to the detector
- mc23c (in addition to the mc21), MC campaign for Run3:
 - Woodcock Tracking: improve timing of gammas in the EMEC
 - VecGeom: Improve CPU time for detectors that use Polycons, Tubes and Cones

Conclusions and Outlook

- Further **Geant4 optimizations in Run3:** speedup from 33% to 48%
 - full simulation runs 2 times faster!
- Other optimisations ongoing
 - GPU-friendly EMEC implementation (expected 8-20% speedup)
 - LTO/PGO (preliminary tests ~3-4% speedup)
 - G4HepEM library adoption (preliminary tests in Athena ~7-8% speedup)
 - High-η particle rejection (ISF particle killer) (few % expected)
- Many interesting **longer-term developments** (please see backup slides):
 - Quantized State Stepper (QSS) integration and testing
 - ML Correction for Aggressive Range Cuts
 - EM physics tuning
 - G4 Field parameter tuning
 - Voxel Density Optimization

Thanks for your attention!

Marilena Bandieramonte marilena.bandieramonte@cern.ch

Backup slides

ATLAS detector in Run3

ATLAS detector in Run3 - Calorimeters

ATLAS detector in Run3: Muons System

Geant4 Simulation Optimizations for Run3

Improvements deployed for the start of Run3 MC production

*details in the presentation of last year

Geant4 intrinsic improvements

Geant4 static linking (Big Library)

Combine all Athena libraries/components that use Geant4 into a *single shared library* linking to Geant4 *static libraries*

G4GammaGeneralProcess

A single general process for gammas that interacts with the Stepping Manager:

- significantly reduce the number of operations needed

-4.3%

measured on 100 ttbar events in Athena

M. Bandieramonte [ATLASSIM-4791] [ATLPHYSVAL-818]

Reduce the number of steps/operations

Magnetic Field Tailored Switch-off

Speedup observed when switching off magnetic field in LAr calorimeter (except for muons) without affecting shower shapes

- Detailed studies showed smaller null-field area needed
 - ~1-2% speedup for full ttbar events

EM range cuts

Explicitly activated for Compton, photoelectric, pairproduction Avoid creating secondaries and transporting a gamma if its energy is below a certain value

Photon and Neutron Russian roulette

M. Bandieramonte, University of Pittsburgh

Geometry optimizations

New EMEC custom solid variants

- Wheel the default LArWheelSolid with G4Polycone
- Cone improved LArWheelSolid with G4ShiftedCone - outer wheel divided into two conical-shaped sections
- **Slices** new LArWheelSliceSolid each wheel is divided into many thick slices along Z axis:
 - best candidate: 5-6% speedup

VecGeom

New and optimised implementation of geometrical shapes, designed to take advantage of explicit and implicit vectorisation:

- we replace only polycons, cons and tubes

-1.5-7% **

measured on 500 ttbar events in Athena

Ben Morgan [ATLASSIM-4750] [ATLPHYSVAL-831]

Longer terms effort

G4 Field parameter tuning

Goal: Find the optimal values of the in-field tracking parameters for physics performance and CPU savings Inspired by CMS efforts to optimize the below parameters

- DeltaIntersection: accuracy of intersection with boundary volume
- Epsilong_max: relative accuracy for endpoint of 'ordinary' integration step (delta_one_step / step_size)
- DeltaChord: approximation of curve with linear sections
- MaxStep: maximum step length

Magnetic field parameters	Strict	Intermediate	Loose
DeltaIntersection (mm)	10 ⁻⁶	10 ⁻⁴	0.01
Epsilon_max	10 ⁻⁴ /step_size	10 ⁻³ /step_size	0.1/step_size
DeltaChord (mm)	10 ⁻³	$2 \cdot 10^{-3}$	0.1
MaxStep (mm)	150	50	150

Quantized State Stepper (QSS)

Quantized State System (QSS): numerical

methods to solve the ordinary differential equations that describe the movement of particles in a field

- QSS methods **discretize the system state** variables as opposed to the traditional methods that discretize the time

- This method handles very efficiently **discontinuities** in the simulation of continuous systems

Reference: Efficient discrete-event based particle tracking simulation for high energy physics

STATUS

- Successfully ported QSS stepper from Geant4 v10.5 to v10.7.2
 - Test within the ATLAS geometry:
 - Results using the N02 model qualitatively indistinguishable compared to those using the G4DormandPrince745
- Integrated in **FullSimLight**
 - ATLAS geometry & magnetic field map
 - Performance profiling ongoing

DSS2

R. Castro, L. Santi, Leandro Gómez Vidal, Alejandro Mignanelli: [link]

EM Physics tuning

Geant4 simulation can be tuned to the needs of the specific simulation features (detector, physics, required accuracy, computational time)

Goal: find the best compromise between simulation accuracy and speed in order to improve data-mc agreement

Parameters to look at:

- Physics Lists
- Range cuts
- Different Geant4 versions
- MSC range factor

G4 simulation is compared to measurements available from the ATLAS CP groups, especially gamma and jet/emiss

- Studies ongoing

K. Dongwon [ATLASSCOT-34]

ATLAS ML Correction for Aggressive Range Cuts

Increased range cuts can **reduce the number of photons**, thus reduce the transportation steps and **increase computational performance**

EM calorimeters dominate the simulation load due to low-energy photons from electron scattering, ~90% of these are transportation processes

The ML correction applied as a post-processing step utilizing **batch processing** and **accelerator hardware** achieving ~15% **speed up** in example geometries – ML inference time negligible compared to simulation time reduction.

Solution to be implemented/tuned for the ATLAS EMEC

ML-based correction

Classification NN to learn correction weights [ref]

Re-weight the **alternative** simulation to the **nominal** one by learning multi-dimensional weights considering all cell energy deposits

Voxel Density Optimization

Tracking can be optimized by voxelization, the **size/granularity of the voxel**s can be tuned

- **Goal**: Determine optimal value for the voxel density
 - Balance between memory used for the detector description and CPU time for simulation, without compromising the accuracy
- Changes studied in FullSimLight & Athena
- ~40% memory footprint reduction for detector description <u>ATLPHYSVAL-887</u>
- No expected speedup/slowdown: some recent tests on the GRID showed a slowdown when VecGeom is active. Currently investigating.

EXPERIMENT