

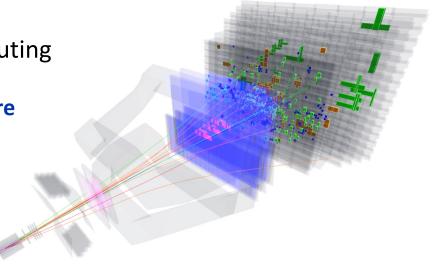
LHCb simulation

Monitoring simulation performance & selected Geant4 related WIP to improve it

Prepared by G. Corti, M. Mazurek, <u>W. Pokorski</u>, D. Popov, M. Veltri on behalf of the LHCb Simulation Project

Setting the scene ...

LHCb Upgrade in Run3

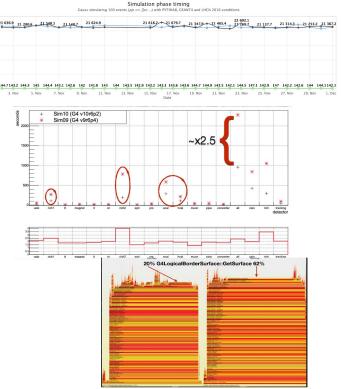

- full software trigger with high signal purity
- analysis directly on trigger output

Very challenging for software & computing

Modernization of the whole LHCb software

- Multi-threading
- Better use of multi-processor CPUs
- Reduce memory usage
- Optimize cache performance
- Remove dead code
- Modern data structures
- Enable code vectorization
- Enable algorithmic optimization
- HLT1 reconstruction on GPUs

L_{inst}: 4 10³² → 2 10³³ cm⁻² s⁻¹ μ : 1.1 → 7.6 L_{int}: 3(Run1) + 5(Run2) fb⁻¹ → 50fb⁻¹


Infrastructure

G4 Collaborarion Meeting 2023, Japan - 26 Sep 2023

LHCb Performance Regression Tests

- Infrastructure in place with nightly builds to check changes as they come in
 - CI -> Nightly builds -> QM/PyTest -> LHCbPR
- Run LHCb applications, various configurations
 - MC generators, LHC conditions, detector geometry
- Typical monitoring properties:
 - Application behaviour
 - Timings, CPU/memory profiling, stack traces sampling (planned)
 - And relevant physics distributions
 - Numbers of tracks/vertices, momentum, energy deposits
- One nightly build setup to adapt to and explore newer versions of Geant4
 - 10.6.4 in production, 10.7.3 in nightly,
 - Plan to add 11 in near future

WIP to include profiling with flamegraphs to

pinpoints CPU hotspots

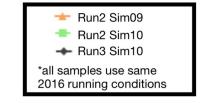
LHCb Simulation 4

LHCbPR Geant4 tests

GEANT4	Simulation	
Hadronic cross-section	Detailed and fast simulation validation	
Calorimeter	Radiation length and absorption map	Detailed timing in detector volumes
Multiple scattering	CPU & memory profiling, stack traces sampling	
Simplified RICH simulation	Reconstruction	
Gamma conversion	Trigger throughput profiling	Tracks monitoring

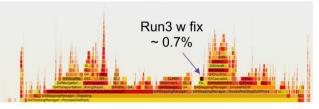
Some G4 tests also within Gauss. Increase tests suite as necessary

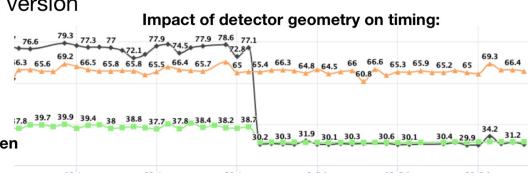
LHCbPR Geant4 tests


New release of Gauss v56r3

Presented at G4 TF in Spring

- Incorporates speed up of Geant4 simulations by A. Valassi
 - Lots of time spend on G4LogicalBorderSurface::GetSurface
 - More RICH PMTs in Run3 —> bigger impact


Fix: newer version of Grant4 performs a look up using std::map rather than std::vector


 \rightarrow back-ported to current version

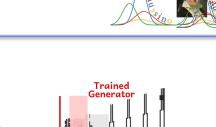
Sim10 is >2x faster than Sim09 when simulating the same conditions!

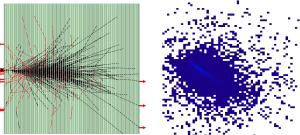
Fast Simulations

hits by running inference on the

Fast simulations with Geant4:

And machine learning

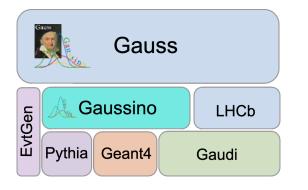

Train a ML model to be able to produce the same output as Geant4


- Stop detailed simulation in a particular region of

the detector for a given type of particles

- Use machine learning to produce the output

- Produce hits by running inference on the generator
- Interface to machine learning libraries !!



External Detector

Gaussino new experiment-independent Core Simulation framework

Gauss[-on-Gaussino] is the new version of the LHCb simulation framework

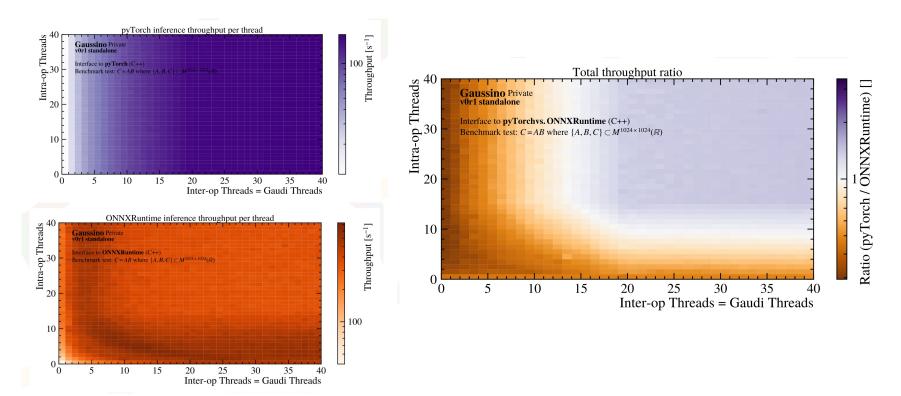
- based on Gaussino's core elements
- adds LHCb-specific components and configurations

Machine model serving using a

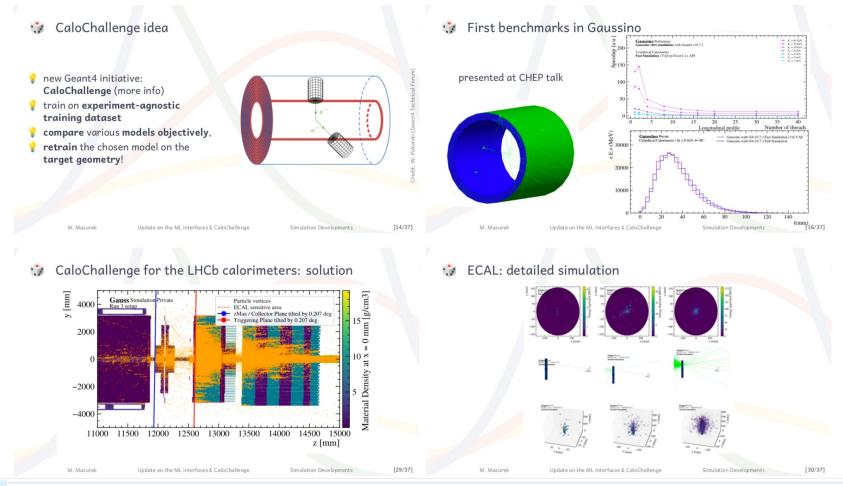
Gaudi's Service:

- Loading of the model
- Setting ML backend's general properties
- Handling multithreading

Machine model evaluation using Gaudi's tools and algorithms


- Provide the right input
- Handle the output

Machine Learning interface

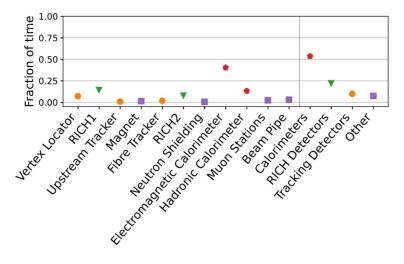

Tested both pyTorch and ONNXRuntime in Gaussino

CaloChallenge

LHCb

G4 Collaborarion Meeting 2023, Japan - 26 Sep 2023

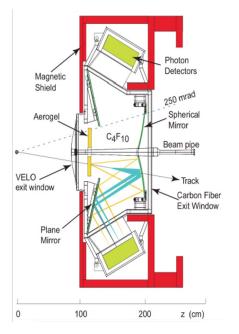
LHCb Simulation 11


GPUs

GPU based simulation in LHCb

- In the LHCb experiment the detailed simulations, based on Geant4, dominate the use of computing resources
- In particular two are the processes responsible:
 - Electromagnetic showers inside the calorimeters
 - Optical photons transportation in the RICH detectors

Investigating a hybrid workflow scheme with the use of GPUs to tackle the issue for EM showers and optical photons leveraging on HEP R&D



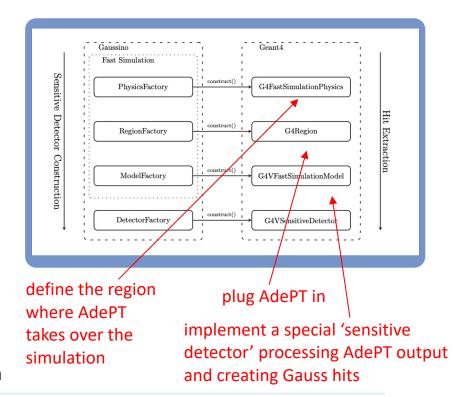
GPU based optical photons simulation in LHCb

 Tests performed with <u>OPTICKS</u>, that provides an interface between Geant4 and the NVIDIA OptiX ray tracing engine to simulate photon propagation while maintaining the simulation of other particles on CPU

- Two RICH detectors in LHCb for PIDs
 - o filled with different gases for different momentum ranges
- Equipped with a dual set of mirrors
 - \circ $\$ Primary: Spherical and tilted \rightarrow Light to secondary mirror
 - $\circ \quad \text{Secondary: Planar} \rightarrow \text{Light to photodetectors}$

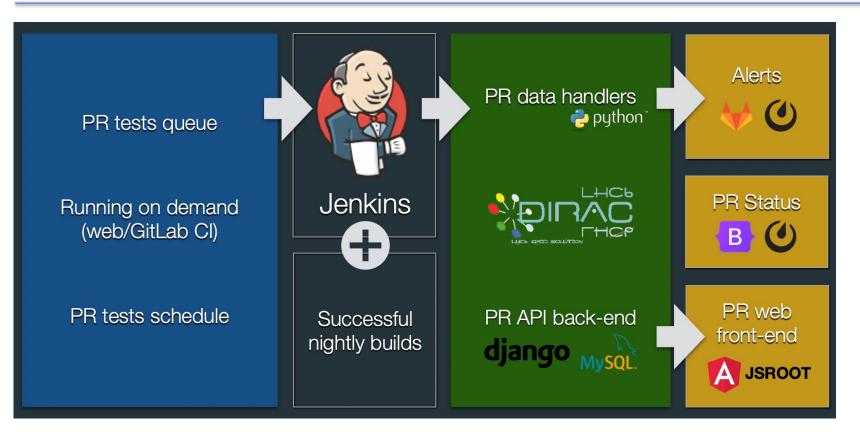
- Use a simplified version of RICH1 to validate the performances of OPTICKS and check its consistency with Geant4
 - No beam pipe, no exit window, only the upper part is used
 - Include mirror reflectivity and MaPMT quantum

- The integration of OPTICKS into the LHCb simulation framework presents a considerably challenge which requires further effort and investigations, in particular
 - The use by OPTICKS of external packages which are required to be specific version to avoid conflicts for use in distributed computing resources
 - The necessity to develop an interface between OPTICKS and the LHCb core simulation framework


- Preliminary work with <u>Mitsuba3</u> as an alternative
 - Proof-of-principle pipeline with the simplified settings

AdePT integration

- Ongoing effort with EP-SFT to integrate AdEPT into Gaussino via the Geant4 CustomSimulation (a.k.a. fast) simulation hook
 - Witek Pokorski working on it with LHCb student Juan Bernardo Benavides
- Gauss-on-Gaussino 'CustomSimulation' machinery configure and triggere a fast simulation model in Geant4
- AdePT example (17) demonstrates the use of the Geant4 fast simulation hook to call AdePT with LHCb GDML geometry
- Combine them to fill the AdePT pipeline with the particles entering the calorimeter region and then give back the whole simulated information to Gauss/Gaussino to generate Gauss hits
 - They should be equivalent to the ones generated in a plain Gauss (Geant4) simulation



BACKUP

LHCbPR testing

Size of data samples are a compromise between time and statistics Store results in various forms: basic types/JSON/files (e.g. ROOT)

