On a Geant4 based Dose Planning Method(DPM) like simulation: fast and accurate 3D dose simulation in highly granular geometries

Mihály Novák

29-09-2023

Mihály Novák 28th Geant4 collaboration meeting (Sapporo, Japan, 2023)

2 Some selected results

1 Motivation

2 Some selected results

What is DPM? Why?

Motivation 000

- Dose Planning Method^a (DPM) is a fast and accurate dose simulation Monte Carlo for photon, electron radiotherapy treatment planning
- the algorithm, i.e. the EM shower modelling, is highly optimised (in terms of speed and accuracy) for voxelized geometry: a (large) set of small volumes resulting e.g. from imaging
- special γ and e^{-}/e^{+} transport that permits long transport steps across (several) heterogeneity/boundaries while keeping the precision:

 - $\gamma \implies Woodcock$ -tracking of photons $e^-/e^+ \implies$ special MSC that simplifies to a pure discrete process
- a Geant4-based but standalone prototype has been developed (dpm-g4cpp GitHub \mathbf{Q} repo.) ۲
- with the following **motivations**:
 - investigate the possibility of utilising the corresponding e^{-}/e^{+} MSC and/or Woodcock-tracking for γ transport, or even the complete DPM like algorithm in the HEP detector simulation domain \implies these might greatly accelerate the corresponding simulations, especially in case of granular geometries (e.g. CMS-HGCAL, ATLAS-EMEC) while keeping/increasing the current accuracy
 - prototype for providing a Monte Carlo simulator for photon and electron real-time (< 1 [s]) radiotherapy treatment
 - in collaboration with Alex Howard & Marco Barbone (Imperial College London)
 - goal: originally on FPGA but finally GPU is already suitable to reach the goal

^aJ Sempau, S. J. Wilderman, A. F. Bielajew, Phys. Med. Biol. 2000 Aug; 45(8):2263-91

What is DPM? Why?

Motivation 000

- Dose Planning Method^a (DPM) is a fast and accurate dose simulation Monte Carlo for photon, electron radiotherapy treatment planning
- the algorithm, i.e. the EM shower modelling, is highly optimised (in terms of speed and accuracy) for voxelized geometry: a (large) set of small volumes resulting e.g. from imaging
- special γ and e^{-}/e^{+} transport that permits long transport steps across (several) heterogeneity/boundaries while keeping the precision:

 - $\gamma \implies Woodcock$ -tracking of photons $e^-/e^+ \implies$ special MSC that simplifies to a pure discrete process (the key)
- a Geant4-based but standalone prototype has been developed (dpm-g4cpp GitHub \mathbf{Q} repo.) ۲
- with the following **motivations**:
 - investigate the possibility of utilising the corresponding e^{-}/e^{+} MSC and/or Woodcock-tracking for γ transport, or even the complete DPM like algorithm in the HEP detector simulation domain \implies these might greatly accelerate the corresponding simulations, especially in case of granular geometries (e.g. CMS-HGCAL, ATLAS-EMEC) while keeping/increasing the current accuracy
 - prototype for providing a Monte Carlo simulator for photon and electron real-time (< 1 [s]) radiotherapy treatment
 - in collaboration with Alex Howard & Marco Barbone (Imperial College London)
 - goal: originally on FPGA but finally GPU is already suitable to reach the goal

^aJ Sempau, S. J. Wilderman, A. F. Bielajew, Phys. Med. Biol. 2000 Aug; 45(8):2263-91

Ok but why? We have accurate EM shower simulation in EMZ/EM-opt4.

- this is true: EMZ/EM-opt4 utilises the accurate e^-/e^+ tracking from the GS model (stays accurate under any conditions)
- however, for the accurate e^{-}/e^{+} tracking one need to:
- 1. <u>use accurate distributions</u>:
 - for the *angular deflections* due to multiple Coulomb scattering (MSC) as well as for the corresponding *longitudinal* and *lateral* post-step point positions
 - the GS model provides such distributions (when used with its most precise setting as in EMZ/EM-opt4)
- 2. be able to move the track to that post-step position:
 - leads to very conservative stepping resulting higher and higher number of simulation steps with decreasing volume sizes/increasing geometry granularity
- practically none of the description of MSC (we currently have in Geant4) is suitable for accurate and fast EM shower simulation in highly granular geometries
- this is why:
 - the DPM like e^-/e^+ transport, especially the description of MSC, permits long transport steps across boundaries
 - MSC simplifies to pure discrete process
 - no displacement is needed and no problem with moving from boundary to boundary (i.e. crossing an entire volume in a single step)
 - can greatly reduce the number of e^-/e^+ simulation steps in granular geometries
 - without loss of accuracy

Ok but why? We have accurate EM shower simulation in EMZ/EM-opt4.

- this is true: EMZ/EM-opt4 utilises the accurate e^-/e^+ tracking from the GS model (stays accurate under any conditions)
- however, for the accurate e^{-}/e^{+} tracking one need to:
- 1. <u>use accurate distributions</u>:
 - for the *angular deflections* due to multiple Coulomb scattering (MSC) as well as for the corresponding *longitudinal* and *lateral* post-step point positions
 - the GS model provides such distributions (when used with its most precise setting as in EMZ/EM-opt4)
- 2. be able to move the track to that post-step position:
 - leads to very conservative stepping resulting higher and higher number of simulation steps with decreasing volume sizes/increasing geometry granularity
- practically none of the description of MSC (we currently have in Geant4) is suitable for accurate and fast EM shower simulation in highly granular geometries
- this is why: looks like a dream...
 - the DPM like e^-/e^+ transport, especially the description of MSC, permits long transport steps across boundaries
 - MSC simplifies to pure discrete process
 - no displacement is needed and no problem with moving from boundary to boundary (i.e. crossing an entire volume in a single step)
 - can greatly reduce the number of e^-/e^+ simulation steps in granular geometries
 - without loss of accuracy

Motivation

2 Some selected results

Indeed not bad ...

Is it something interesting for others as well?