Development of new low energy EM models to describe ionisation in the atmosphere

28° Geant4 Collaboration Meeting, Sapporo, Hokkaido, 25-29/09/23

F. Nicolanti, B. Caccia, A. Cartoni, D.Emfietzoglou, R. Faccini, S. Incerti, I. Kyriakou,

M. Satta, H. N. Tran, C. Mancini-Terracciano

Contact: francesca.nicolanti@uniroma1.it

Motivation

What is the impact of cosmic rays and ions on atmospheric chemistry and climate evolution ?

Cloud cover

(Voiculescu et al.

2006)

Ozone deplation (Kniveton 2004)

aerosol formation

(Shumilov et al. 1996 Mironova and Pudovkin 2005; Kazil et al. 2006)

The connection of cosmic rays with ions and the climate parameters remains a challenging topic. •

Motivation

Cosmic Rays impact with the atmosphere produce ions

Even a small amount of ions can affect the atmospheric composition:

- they trigger **faster chemical reactions** (up to 10 orders of magnitude higher)
- Partecipate in **catalytic processes**
- Inhomogeneous spatial distribution

State of the Art

Monte-Carlo codes: CR induced ionisation

Oulu CRAC:CRII (CORSIKA+FLUKA)

Usoskin et al., J. Atm. Solar-Terr. Phys, (2004). Usoskin, Kovaltsov, J. Geophys. Res., (2006, 2010).

Bern model ATMOCOSMIC (GEANT-4)

Desorgher et al., Int. J. Mod. Phys. A, (2005) Scherer et al. Space Sci. Rev. (2006).

AtRIS (GEANT-4)

Banjac et al., JGR Space Physics (2018)

RUSCOSMICS (Geant4)

Maurchev et al., Bull. Russ. Acad. Sci. Phys. (2019)

Output of the models: average production rate of ion pairs (ions cm-3 s-1)

<u>BUT</u>

- Condended history approach: it neglects local effects;
- Medium-high energy models: less accurate description of low-energy secondary radiation;
- No molecular description;

How many ions are produced? In what state? What spatial distribution?

Geant-DNA for atmosphere

GOAL

Accurately **describe ions produced by CR** interaction in the atmosphere:

- Ionic density
- State of ionization
- spatial distribution of ions
- chemical species produced

HOW

By including in Geant4-DNA new

models for particle-impact interactions with relevant molecules for climatology

- Track Structure approach
- physics models reach low energy (10 eV)
- Description of target molecular properties:

STARTING POINT

- e- impact interaction models on N2 and O2
- Ionisation, elastic scattering, electronic excitation
- energy range 10eV 10 MeV

Cross section models have been reviewed;

Selected cross section models:

- Impact ionisation: Relativistic Binary Encounter Bethe (RBEB) model
- Elastic scattering: Screening Corrected Additivity Rule(SCAR) model
- Electronic excitation: Porter's formulas

They have been optimized for N2,O2 based on comparison with experimental data.

Calculation of electron interaction models in N2 and O2 / F. Nicolanti, B. Caccia, A. Cartoni, D. Emfietzoglou, R. Faccini, S. Incerti, I. Kyriakou, M. Satta, H. N. Tran, C. Mancini-Terracciano. Physica Medica

[MODELS ARE DESCRIBED IN THE G4AtmXXXModel.cc .hh CLASSES]

Designed to handle a mix of materials

Interaction type	Cross section type	Model name	Implementation type
Impact ionisation	Total and differential (production energy of secondaries) - including partial cross sections for 6 subshells for O2, and 5 for N2	RBEB (except for k-shells ionisation which used the averaged RBEB)	Analytical
Elastic scattering	Total and differential (scattering angle)	SCAR (Screening Corrected Additivity Rule) with optimized free potential parameters	Data tables: igmadiff_cumulated_elastic_eN2_atm.dat igma_elastic_eN2_atm.dat
Electronic excitation	Total - 27 states for O2, 32 states for N2	Formulas based on Porter et al, fitted cross section parameters	Data tables: <pre> sigma_excitation_e_N2_atm.dat </pre>

[1] Kim, Y. (2000), Extension of the Binary-Encounter-Dipole Model to Relativistic Incident Electrons, Physical Review A (Atomic, Molecular and Optical Physics)

[2] Francesc Salvat; Aleksander Jablonski; Cedric J. Powell (2005). elsepa—Dirac partial-wave calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules. , 165(2), 157–190.

[3] H. Porter, C. Jackman, and A. Green, Efficiencies for production of atomic nitrogen and oxygen by relativistic proton impact in air, J. Chem. Phys. 515 65 (1) (1976) 154–167

Validating implementation

- ✓ Differential cross sections
- ✓ Stopping power
- ✓ Range

Differential Cross Sections (N2)

Ionisation: secondary electrons distribution

Primaries and secondary electrons distribution have been:

- compared to analytical calculations
- validated through experimental data

General good agreement is observed

Elastic scattering: scattering angle distribution

Stopping Power in N2 and O2

Relative differences:

- <10% with Gumus model and Peterson
- <5% with NIST

for E>20eV

Relative differences:

- <10% with Gumus, Gupta, and Peterson
- <3.5% with NIST

for E>30eV

Stopping Power in Air

Range

Further work

Import cosmic rays spectra at different altitudes (5-25km) in Geant4

Simulate primaries interactions using Geant4 models

Use of the new electron-impact G4-DNA models in small volumes

Development of a **Geant4-DNA example** to track electrons in the atmosphere and get the **ionic density**

Experimental validation

Development of the **physical-chemical stage** to simulate dissociation, diffusion, recombination, and chemical reactions

Conclusions

N2 and O2 gas cross-section have successfully been implemented in Geant4-DNA. This will allow to simulate interactions with a simplified **air volume** in the atmosphere

They will be available in a next Geant4 release togheter with an updated version of the spower example /examples/extended/medical/dna/spower

Applications:

- Potential impact on the physics of the atmosphere
- Open the way for new space-related studies regarding chemistry and exobiology
- Can be applied to any kind of Geant4-DNA simulation (micro and nano dosimetry, discharge fenomena, ..).

Contact: francesca.nicolanti@uniroma1.it

AUTOIONISATION PROCESS INCLUDED IN THE EXCITATION MODEL:

The auto-ionisation process is part of the excitation model in both MC codes, where a probability of 50% auto-ionisation is assumed if the excitation energy of a Rydberg state is greater than the ionisation threshold for the molecule under study. The secondary electrons produced by auto-ionisation are emitted isotropically and their kinetic energy is calculated from the given excitation energy minus the ionisation threshold.

[MODELS ARE DESCRIBED IN THE G4AtmXXXModel.cc .hh CLASSES]

- Designed to handle a mix of materials different from liquid water
- **«G4DNAModelInterface»** used to manage the physical processes and models of mixed material
- Introduced for the first time in Geant4 10.4 for the use of DNA precusors material's cross-sections: THF, TMP, PU and PY (*M. Bug et al, Rad. Phys and Chem. 130, 459-479 (2017)*)

«G4AtmPhysics» class

auto modElas = new G4AtmElasticModel();

auto air_e_elas = new G4DNAModelInterface("Air_e-_elas"); air_e_elas->RegisterModel(modElas);

auto e_DNAElasticProcess =
 new G4DNAElastic("Air_e-_elasticScattering");
e_DNAElasticProcess->SetEmModel(air_e_elas);

helper->RegisterProcess(e_DNAElasticProcess, part);

«G4AtmElasticModel.cc» class

if (fpG4 MOLNITRO != nullptr) { auto index = fpG4_MOLNITRO->GetIndex(); AddCrossSectionData(index, p, "dna/sigma_elastic_e_N2_elsepa", "/dna/sigmadiff cumulated elastic e N2 elsepa", scaleFactor); SetLowELimit(index, p, 10. * eV); SetHighELimit(index, p, 10. * MeV); if (fpG4_MOLOXYGEN != nullptr) { auto index = fpG4 MOLOXYGEN->GetIndex(); AddCrossSectionData(index, p, "dna/sigma elastic e O2 elsepa", "/dna/sigmadiff_cumulated_elastic_e_O2_elsepa" scaleFactor): SetLowELimit(index, p, 10 * eV); SetHighELimit(index, p, 10 * MeV): if (!G4DNAMaterialManager::Instance()->IsLocked()) { // Load data LoadCrossSectionData(p); G4DNAMaterialManager::Instance()->SetMasterDataModel(DNAModelType::fDNAElastics, this); fpModelData = this;

The cross sections have been optimized for N2,O2:

- Potential models and calculation parameters for elastic scattering:
 - based on discrete RMSE between the experimental data and calculated DCSs
- Free Porter's model parameters for excitation:
 - through fitting experimental data

Calculation of electron interaction models in N2 and O2 / F. Nicolanti, B. Caccia, A. Cartoni, D. Emfietzoglou, R. Faccini, S. Incerti, I. Kyriakou, M. Satta, H. N. Tran, C. Mancini-Terracciano. Physica Medica

ELSEPA interaction potential

Optical potential model: $V(r) = V_{st}(r) + V_{ex}(r) + V_{cp}(r) - iW_{abs}(r)$

Electrostatic potential $V_{st}(\mathbf{r})$

• Potential model:

Nuclear charge: Fermi distribution; **Electron density**: Dirac–Fock distribution.

Correlation-polarization potential $V_{st}(r)$

Influence at small scattering angles and E < 500eV

- Potential model:
 - Buckingham potential + LDA correlation (Perdew and Zunger)
- Free parameters:
 - static polarizability $\alpha_d = 1.562E-24(02)$,
 - 1.710E-24(N2) $[cm^{31}]$ cut-off parameter $b_{pol}^2 = \max[(E 20 \text{ eV})/\text{eV}, 1].$

Exchange potential $V_{ex}(r)$ Potential model: Furness–McCarthy potential.

Inelastic absorption potential $-iW_{abs}(r)$:

Influence at intermediate and large scattering angles

- Potential model:
 - LDA potential (Salvat)
- Free parameters:
 - lowest excitation energy $\epsilon_1 = 0.98 \text{ eV}(O2)$, 7.63 (N2)

• absorption strength
$$A_{abs} = 2$$

N.B. Empirical parameters are validated for noble gases and mercury