

Antiproton annihilation in INCL

Demid Zharenov

26/09/2023 28th Geant4 Collaboration Meeting

Contents

- Oncoming Pbar Experiments
- INCL Implementation
- Inputs and Assumptions
- Comparison with data
- Summary

Contents

- Oncoming Pbar Experiments
 - o In-flight
 - o At rest
- INCL Implementation
- Inputs and Assumptions
- Comparison with data
- Conclusions

Experiments

- PANDA(FAIR) fixed target experiment with high-energy \bar{p}
- PUMA (antiProton Unstable Matter Annihilation)

- Antiproton Decelerator (CERN)
 ELENA (Extra Low ENergy Antiproton)
- General AntiParticle Spectrometer (GAPS)

Contents

- Oncoming Pbar Experiments
- INCL Implementation
 - o In-flight
 - o At rest
- Inputs and Assumptions
- Comparison with data
- Summary

Mechanisms

In-flight (usual scenario in INCL)

Contents

- Oncoming Pbar Experiments
- INCL Implementation
- Inputs and Assumptions
 - o In-flight
 - o At rest
- Comparison with data
- Summary

In-flight inputs

- Ppbar cross-sections are mostly well known
- Much less data for npbar, nnbar and pnbar case:
 - SU(3) symmetry to add more channels
 - Coulombic correction at lower energies
- Exotic Antibaryons do not interact
- One-pion production is the Threshold

Elementary cross-sections

At rest inputs

- Annihilation Distance
- S_p/S_n ratio
- Mesonic Final States $(\pi, \rho, \eta, \omega, K)$
- Total reaction cross-section

At rest annihilation

$$\Gamma_{tot(n,l)} = \sum \Gamma_{xray} + \sum \Gamma_{Auger} + \Gamma_{annihilation,n} + \Gamma_{annihilation,p}$$

Final state particle position

$$p(r) = Nr^2 \rho(r) R_{n,n-1}^2(r)$$

n

Final state particle position

 $p(r) = Nr^2 \rho(r) R_{n,n-1}^2(r)$

 $S_p/S_n \approx 1.331$ for Deuterium

Final state probabilities

Probability.

E.S. Golubeva et al. / Effects of mesonic resonance production

 TABLE 1

 Probabilities of intermediate channels (in %) that were used to simulate p̃p annihilation at rest

Probability.

Probability.

TABLE 2	2
---------	---

	Probabilities of intermediate channels	(in %) that were used	d to simulate pn annihilation at rest
--	--	-----------------------	---------------------------------------

Channel	r roouonny,	Channel		Channel							
	ref.	$\pi^+ \rho^- \omega$	ref. 1.10	$\pi^+\pi^+\pi^-\pi^0 ho^-$	0.16	Channel	Probability, ref.	Channel	Probability, ref.	Channel	Probability
πω	0.34^{18})	$\pi^- \rho^+ \omega$	1.10	$\pi^{+}\pi^{-}\pi^{-}\pi^{0}\rho^{+}$	0.16						
ώω	1.57 19)	$\pi^{0}\rho^{0}\omega$	0.57	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\rho^{0}$	0.12	$\pi^-\pi^0$	0.49 ²⁶)	$\eta\omega\pi^-$	0.60	$\pi^+\pi^-\pi^0\pi^0 ho^-$	0.16
$\pi^+\pi^-$	0.40^{20})	$\eta\eta\pi^0$	0.11	$\pi^{+}\pi^{0}\pi^{0}\pi^{0}\rho^{-}$	0.04	$\pi^-\omega$	0.48 27)	$\omega\omega\pi^-$	0.71	$\pi^-\pi^-\pi^0\pi^0 ho^+$	0.08
$\pi^0\pi^0$	0.02^{21})	$\eta \omega \pi^0$	0.30	$\pi^-\pi^0\pi^0\pi^0 ho^+$	0.04	$\pi^- ho^0$	0.47 10)	$\eta\eta\pi^-\pi^0$	0.06	$\pi^{-}\pi^{0}\pi^{0}\pi^{0}\rho^{0}$	0.05
$\pi^+ ho^-$	1.52 22)	$\omega\omega\pi^0$	0.37	$\pi^0\pi^0\pi^0\pi^0\rho^0$	0.01	$\pi^0 \rho^-$	0.47 ^a)	$\eta\omega\pi^-\pi^0$	0.03	$\pi^0\pi^0\pi^0\pi^0\rho^-$	0.01
$\pi^- ho^+$	1.52 ²²)	$\eta\eta\pi^+\pi^-$	0.07	$\pi^+\pi^+\pi^-\pi^-\eta$	0.11 ²⁰)	$\rho^{-}\rho^{0}$	3.51 ^b)	$\pi^+\pi^-\pi^-\eta$	1.00	$\pi^+\pi^-\pi^-\pi^0\eta$	0.37
$oldsymbol{\pi}^{0}oldsymbol{ ho}^{\mathbf{n}}$	1.57 23)	$\eta\eta\pi^0\pi^0$	0.02	$\pi^+\pi^-\pi^0\pi^0\eta$	0.22 ^a)	$\pi^{-}\eta$	0.29 10)	$\pi^-\pi^0\pi^0\eta$	0.67	$\pi^-\pi^0\pi^0\pi^0\eta$	0.09
$\rho^+ \rho^-$	3.37 ^a)	$\eta\omega\pi^+\pi^-$	0.04	$\pi^0\pi^0\pi^0\pi^0\eta$	0.01 ^a)	ρ,	2.27	$\pi^+\pi^-\pi^-\omega$	10.52 ¹⁰)	$\pi^+\pi^-\pi^-\pi^0\omega$	0.40
$\rho^{0}\rho^{0}$	0.67 24)	$\eta\omega\pi^0\pi^0$	0.01	$\pi^+\pi^+\pi^-\pi^-\omega$	1.80 ²⁰)	ρω	3.51 ^b)	$\pi^{-}\pi^{0}\pi^{0}\omega$	7.01 ^a)	$\pi^-\pi^0\pi^0\pi^0\omega$	0.09
$\pi^{0}\eta$	0.06^{23})	$\pi^+\pi^-\pi^0\eta$	1.22	$\pi^+\pi^-\pi^0\pi^9\omega$	2.58 ^a)	$\pi^{+}\pi^{-}\pi^{-}$	2.86	$\pi^+\pi^-\rho^-\eta$	0.08	$\pi^+\pi^+\pi^-\pi^-\pi^-\pi^0$	8.33
$\pi^{0}\omega$	0.58 23)	$\pi^0\pi^0\pi^0\eta$	0.17	$\pi^0\pi^0\pi^0\pi^0\omega$	0.10 ^a)	$\pi^{-}\pi^{0}\pi^{0}$	1.90	$\pi^-\pi^-o^+n$	0.05	$\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	6.67
$\rho^0 \eta$	0.90 18)	$\pi^+\pi^-\pi^0\omega$	2.84	$\pi^+\pi^+\pi^+\pi^-\pi^-\pi^-$	2.83	$\pi^{+}\pi^{-}a^{-}$	3.62 10)	$\pi^-\pi^0 a^0 n$	0.06	$\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.56
$\rho^0 \omega$	0.79 22)	$\pi^0\pi^0\pi^0\omega$	0.40	$\pi^+\pi^+\pi^-\pi^-\pi^0\pi^0$	9.76	$\pi^{-}\pi^{-}a^{+}$	0.58^{10}	$\pi^{0}\pi^{0}\rho^{-}n$	0.02	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\rho^{0}$	0.02
$\pi^+\pi^-\pi^0$	2.34 ²⁰)	$\pi^+\pi^- ho^0\eta$	0.06	$\pi^+\pi^-\pi^0\pi^0\pi^0\pi^0$	2.68	$\pi^{-}\pi^{0}\rho^{0}$	5.61ª)	$\pi^{+}\pi^{-}\pi^{-}\pi^{0}$	5.51	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{0}\rho^{-}$	0.07
$\pi^{\circ}\pi^{\circ}\pi^{\circ}$	1.12 ²⁵)	$\pi^+\pi^0 ho^-\eta$	0.06	$\pi^0\pi^0\pi^0\pi^0\pi^0\pi^0$	0.07	$\pi^{0}\pi^{0}a^{-}$	351^{a}	$\pi^{-}\pi^{0}\pi^{0}\pi^{0}$	1.38	$\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{0}\rho^{+}$	0.05
$\pi^+\pi^- ho^0$	2.02 20)	$\pi^-\pi^0 ho^+\eta$	0.06	$\pi^+\pi^+\pi^+\pi^-\pi^- ho^-$	0.02	$\pi^+ \alpha^- \alpha^-$	1 04	$\pi^{+}\pi^{-}\pi^{-}a^{0}$	0.99	$\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}n^{0}$	0.06
$\pi^+\pi^0\rho^-$	2.02 ^a)	$\pi^{0}\pi^{0}\rho^{0}\eta$	0.02	$\pi^+\pi^+\pi^-\pi^-\pi^- ho^+$	0.02	$\pi^{-} a^{+} a^{-}$	2.09	$\pi^{+}\pi^{-}\pi^{0}\rho^{-}$	1.97	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\rho^{-}$	0.03
$\pi^-\pi^0\rho^+$	2.02 ^a)	$\pi^+\pi^+\pi^-\pi^-$	2.74	$\pi^+\pi^+\pi^-\pi^-\pi^0 ho^0$	0.06	$\pi^{-}\alpha^{0}\alpha^{0}$	0.70	$\pi^{-}\pi^{-}\pi^{0}\rho^{+}$	0.99	$\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}n^{+}$	0.02
π [°] π [°] ρ [°]	1.01 ^a)	$\pi^+\pi^-\pi^0\pi^0$	3.89	$\pi^+\pi^+\pi^-\pi^0\pi^0 ho^-$	0.06	$\pi^{0} a^{-} a^{0}$	1 30	$\pi^{-}\pi^{0}\pi^{0}\rho^{0}$	0.75	$\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}n^{0}$	0.01
$\pi^+ ho^- ho^0$	1.23	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.21	$\pi^+\pi^-\pi^-\pi^0\pi^0 ho^+$	0.06	$\pi \rho \rho$	1.37	$\pi^{0}\pi^{0}\pi^{0}\sigma^{-}$	0.75	$\pi^{+}\pi^{+}\pi^{-}\pi^{-}\pi^{-}\pi^{-}$	0.14
$\pi^{-}\rho^{+}\rho^{0}$	1.23	$\pi^+\pi^+\pi^- ho^-$	2.58 24)	$\pi^+\pi^-\pi^0\pi^0\pi^0 ho^0$	0.03	$\pi \pi \eta$	1.25	-+-+	1.24	$\pi^{+}\pi^{-}\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}$	0.14
$\pi^0 \rho^+ \rho^-$	1.23	$\pi^+\pi^-\pi^- ho^+$	2.58 24)	$\pi^+\pi^0\pi^0\pi^0\pi^0\rho^-$	0.01	$\pi \pi \omega$	5.05	πππππ _+0_0	1.24	<u> </u>	0.05
πυρυρυ	0.54	$\pi^+\pi^-\pi^0 ho^0$	6.29 ²⁴)	$\pi^{-}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\rho^{+}$	0.01	$\pi \rho \eta$	0.78	$\pi \pi \pi \pi \pi \pi$	2.72	######################################	0.05
$\pi^+\pi^-\eta$	1.50 ²⁴)	$\pi^+\pi^0\pi^0 ho^-$	5.05 ^a)	$\pi^+\pi^+\pi^-\pi^-\pi^0\eta$	0.31	π°ρη - 0	0.78	$\pi \pi \pi \pi \pi \pi$	0.37	πππππω _+_ ⁻ _ ⁻ _0_0	0.05
$\pi^{\circ}\pi^{\circ}\eta$	0.94 18)	$\pi^-\pi^0\pi^0 ho^+$	5.05 ^a)	$\pi^+\pi^-\pi^0\pi^0\pi^0\eta$	0.17	$\pi \rho^{\circ} \omega$	1.03	$\pi^{\prime}\pi^{\prime}\pi^{\prime}\pi^{\prime}\mu^{\prime}$	0.12	πππππω - 0.0_0.0	0.09
$\pi^{+}\pi^{-}\omega$	3.03 ²⁰)	$\pi^0\pi^0\pi^0 ho^0$	0.77 ^a)	$\pi^0\pi^0\pi^0\pi^0\pi^0\eta$	0.01	$\pi^{\circ} ho^{-}\omega$	1.03	$\pi'\pi\pi\pi\rho'$	0.08	π $\pi^{*}\pi^{*}\pi^{*}\pi^{*}\omega$	0.01
$\pi^{\circ}\pi^{\circ}\omega$	0.79 ^a)	$\pi^+\pi^+\pi^-\pi^-\pi^0$	2.61	$\pi^+\pi^+\pi^-\pi^-\pi^0\omega$	0.10	$\eta\eta\pi^-$	0.21	$\pi^+\pi^-\pi^-\pi^0 ho^0$	0.16		
$\pi^+ ho^- \eta$	0.84	$\pi^+\pi^-\pi^0\pi^0\pi^0$	1.37	$\pi^+\pi^-\pi^0\pi^0\pi^0\omega$	0.06						
$\pi^- ho^+ \eta$	0.84	$\pi^0\pi^0\pi^0\pi^0\pi^0$	0.07								• 16
$\pi^{0} ho^{0}\eta$	0.44	$\pi^+\pi^-\pi^+\pi^- ho^0$	0.08								

Total reaction cross-section

$$\sigma_{geom} = \pi R^2 (1 + \frac{Z e^2 (m_{\bar{p}} + M_{target})}{4\pi \epsilon_0 E_{kin} R M_{target}})$$

• 28th Geant4 Collaboration Meeting <u>https://doi.org/10.1016/j.physletb.2011.09.069</u>

Contents

- Oncoming Pbar Experiments
- Annihilation Mechanisms
- INCL Implementation
- Inputs and Assumptions
- Comparison with data
 - Ejected particle spectra
 - Residual nuclei yields
- Summary

Polster et al. Light particle emission induced by stopped antiprotons in nuclei: Energy dissipation and neutron-to-proton ratio. 1995

At rest (Polster 1993)

Polster et al. Spectra and multiplicities of n, p, d, t, K±, pi± from antiproton annihilation in Cu and U. 1993

28th Geant4 Collaboration Meeting

At rest (Polster 1993)

Polster et al. Spectra and multiplicities of n, p, d, t, K±, pi± from antiproton annihilation in Cu and U. 1993

At rest (Polster 1995)

Polster et al. Light particle emission induced by stopped antiprotons in nuclei: Energy dissipation and neutron-to-proton ratio. 1995

At rest (Polster 1995)

Polster et al. Light particle emission induced by stopped antiprotons in nuclei: Energy dissipation and neutron-to-proton ratio. 1995

At rest / In-flight

28th Geant4 Collaboration Meeting

P.L.McGaughey et al., Phys. Rev. Lett. V56, N20, 198

At rest / In-flight

P.L.McGaughey et al., Phys. Rev. Lett. V56, N20, 198

At rest / In-flight

28th Geant4 Collaboration Meeting

P.L.McGaughey et al., Phys. Rev. Lett. V56, N20, 198

In-flight

28th Geant4 Collaboration Meeting

T. von Egidy et al., Eur. Phys. J. A 8, 197 (2000)

Kinetic energy spectra of neutrons produced in Pbar-Al27, Pbar-Cu at projectile momenta 1.22 GeV/c

28th Geant4 Collaboration Meeting

T. von Egidy et al., Eur. Phys. J. A 8, 197 (2000)

•28

Kinetic energy spectra of neutrons produced in Pbar-Ta181, Pbar-U238 at projectile momenta 1.22 GeV/c

T. von Egidy et al., Eur. Phys. J. A 8, 197 (2000)

In-flight (KEK)

Miyano et al. Evaporation of Neutral Strange Particles in p -Ta at 4 GeV/c. 1986

Residual nuclei (U238)

Residual nuclei (U238+proton)

• 32

Proton at 1876 MeV

Pbar at rest

Residual nuclei (Mo92, 95 and 98)

Residual nuclei (Copper)

Residual nuclei (Copper)

$$\sigma_D^{cum} = \sigma_D + \sigma_P \frac{\lambda_P}{\lambda_P - \lambda_D}$$

Contents

- Oncoming Pbar Experiments
- Annihilation Mechanisms
- INCL Implementation
- Inputs and Assumptions
- Comparison with data
- Summary

Summary

- Pbar at rest is available already
- in flight will be available soon in Geant4

Next improvements

- Sensitivity analysis to be performed for at rest inputs
- Introduce a more realistic total reaction cross-section at rest
- Introduce neutron as projectile
- Introduce heavier antiparticles as projectiles

Thank you for your attention!