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Nuclear interaction models
In Geant4
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Problems in Geant4 below 100 MeV/u

No dedicated model to nuclear
interaction in Geant4

Many papers showed discrepancies:

Braunn et al. : one order of magnitude in 12C fragmentation at
95 MeV/u on thick PMMA target

De Napoli et al. : angular distribution of the secondaries
emitted in the interaction of 62 MeV/u 12C on thin carbon
target

Dudouet et al. : similar results with a 95 MeV/u 12C beam on
H, C, O, Al and Ti targets

Graph Neural Networks for fast emulation
of nuclear interaction models

o

Exp. data [Plot from De Napoli et al.
e G4-BIC Phys. Med. Biol., vol. 57, no.
22, pp. 7651-7671, Nov. 2012]
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Cross section of the 6Li production at 2.2 degree in
a 12C on natC reaction at 62 MeV/u.
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» [est-particle approach

e Self-consistent +
collisions

* Probabillity to find a nucleon in the
phase space

Graph Neural Networks for fast emulation
of nuclear interaction models

BLOB (Boltzmann-Lagevein One Body)
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BLOB (Boltzmann-Lagevein One Body)

2C + "'C — 4He at 62 MeV/u
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Order of minutes per interaction!
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Deep Learning to emulate NIMs

/ ) — Y
| L—» Reproduce a model output

Negligible running time

Neural Network
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Complex Physics Simulations

Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate
complex physics with graph networks." International
Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2002.09405

Github

github.com/deepmind/deepmind-
research/tree/master/learning to simulate.

Videos

https://sites.google.com/view/learning-to-simulate
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Particle render
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Graph Network-based Simulators (GNS)

(a) xto XtK

Learned simulator, sg
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GNN approach

Emulating the dynamics of

In 12C on 12C reaction at 12 MeV/u

Each nucleon is a node of the graph
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Visually satisfying results...

Ground truth Prediction
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... Which are not Physical

Momentum on z axis
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In the

Quantities are conserved on average

Variance explodes increasing time steps

Cannot be used to infer physical quantities

11

at the end of the reaction
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Differences in the Physics

QMD, BLOB

Short range interactions
Gravity

Long range interactions
Collisions

(g NG~ S
Building fully connected graphs IS 27
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Feasible only for
limited number of nodes

(QMD) N
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Proposed approach

QMD, BLOB

Short range interactions
Gravity

Emulating the % N\ <
acting on each node v\
\\ /A@
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Why the Potential

Three good reasons

Get more on the Physics

up: Potential computation is the Bottleneck

Mean Field
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Why the Potential

Get more control on the Physics

DL computes a ,
but complex function

i

Enforce physical conservation laws in the model

Al solution

q9,p —
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) Elapsed Time " '£231.966s

Why the Potential

. ) CPU Time “; 231.938s
It Is the Bottleneck Total Thread Count: 1
Paused Time - 0s

® lapla ¢ other ) Top Hotspots

Profiling BLOB
with Intel VTune Amplifier

This section lists the most active functions in your
application. Optimizing these hotspot functions
typically results in improving overall application

performance.

Function Module  CPU Time "~
~ 4 minS per ____________________________________________________________ lapla run-orig 176.281s
" " erff libm.so.6 17.201s

Interaction | |
define_two_clouds rp  run-orig 9.658s
sortrx run-orig 7.018s
powf libm.so.6 5.377s
[Others] 16.403s

3 mins: computing mean field laplacian
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Why the Potential

Improving Mean Field
Learn any potential given particle coordinates
more time and complexity

Improve Mean Field approximation
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Once you’ve learned the Potential

Full Deep Learning

V. Accounts for long range
l Interactions
Oﬁ@ GNNs predicts collisions
b\/—i

{¢",p,,V'} roL gl ptth)
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Hybrid Models
Get [ differentiating V,

Integrate the equation of
motion with standard methods

(Runge Kutta 4, ...)
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Once you’ve learned the Potential

Full Deep Learning

V, Accounts for long range
[ interactions

GNNSs predicts collisions

for Fully Connected graphs {qH—l, pt+1 }
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Once you’ve learned the Potential

Mixing Deep Learning with _
standard methods Hybrid Models

Get F; automatically Integrate the equation of

differelntiating V. > motion with standard methods

the DL model Integrate it into existing code,

as a function potential computation
GetPotential() method in QMD
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Learning the Potential: DL model

Particle-wise MLP for Potential Prediction

) Vi= > Vi= D f @ qPippsci)

Embed particle exchange symmetry
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Learning the Potential: Preliminary results

Particle-wise MLP for Potential Prediction

Potential Prediction

5 layers MLP + ReLu + LayerNorm Vv :
C . .
23k stories 1- ) )
10 events o . N
o
24 particles : ~5 M examples > . :
0 o
o
~3 days training on Nvidia V100 - ) e
. True
-2 - Predicted o
Results: Mean Absolute Error:  0.0155 0 5 1o 15 20 25
Particles
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Next Steps

Full Deep Learning approach to
emulate QMD dynamics on BLOB

Exporting the DL models in or using
Releasing the code for integration (as an example?)
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Thank you for your attention!

e Nuclear interaction models in Geant4:
* Sophisticated models are slow

e No dedicated model under 100 MeV/u

 Deep Learning approach for model emulation
o State-of-the-art approach fails on QMD dynamics
* Potential prediction with Deep Learning
* Full Deep Learning or Hybrid models

ERIOR,.

S 'l’ o
W4 SAPIENZA ¢ &
L&/ UNIVERSITADIROMA 2 3N S
5 _lz b4

Lorenzo Arsini 26-09-2023
G4 Collaboration Meeting 2023 - Hokkaido University, Sapporo

INFN




Backup slides




Deep Learning framework

Known
gradients =—»

Neural Network \Y X f W(X ) wrt input
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Differentiability

Training a Neural Network

Minimization of a Loss Function
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Graph Neural Networks

Deep Learning on Graphs
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Message passing

Neighborhood information

!

Process Learning on
nodes
Learning on
Graph Neural Networks for fast emulation Lorenzo Arsini - 26/09/2023

of nuclear interaction models 28 28th Geant4 Collaboration Meeting - Hokkaido University, Sapporo



30 A

25 -

20 A

15 -

10 A

B Real
t=10
t=>50
t =100

0.4

Momentum

Momentum Conservation
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Check Physical
conserved quantities

conserves
momentum on average

while

e Similar mean
e Wider variance

Conservation fails at later times
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Check Physical
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mass center on average

while

Graph-QMD:

e Similar mean
e Wider variance

Conservation fails at later times
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