Graph Neural Networks for fast emulation of nuclear interaction models G4 Collaboration Meeting 2023 - Hokkaido University, Sapporo

L. Arsini^{1,2}, B. Caccia³, A. Ciardiello¹, M. Colonna⁴, S. Giagu^{1,2}, C. Mancini Terracciano^{1,2}

¹Department of Physics, Sapienza University of Rome, Rome, Italy. ²INFN, Section of Rome, Rome, Italy. ³Istituto Superiore di Sanità, Rome, Italy. ⁴INFN, Section of LNS

26/09/2023

Nuclear interaction models In Geant4

- e.g. QMD

Graph Neural Networks for fast emulation of nuclear interaction models

target fragment

Trade off between computing time and precision

Use simpler models

Problems in Geant4 below 100 MeV/u

No dedicated model to nuclear interaction below 100 MeV/u in Geant4

Many papers showed discrepancies:

Braunn et al. : one order of magnitude in 12C fragmentation at 95 MeV/u on thick PMMA target

De Napoli et al. : angular distribution of the secondaries emitted in the interaction of 62 MeV/u 12C on thin carbon target

Dudouet et al.: similar results with a 95 MeV/u 12C beam on H, C, O, Al and Ti targets

> Graph Neural Networks for fast emulation of nuclear interaction models

- Exp. data
- **G4-BIC**
- G4-QMD

[Plot from De Napoli et al. Phys. Med. Biol., vol. 57, no. 22, pp. 7651–7671, Nov. 2012]

Cross section of the ⁶Li production at 2.2 degree in a ¹²C on ^{nat}C reaction at 62 MeV/u.

BLOB (Boltzmann-Lagevein One Body)

- Test-particle approach
- Self-consistent mean field + collisions
- Probability to find a nucleon in the phase space

Graph Neural Networks for fast emulation of nuclear interaction models

Lorenzo Arsini - 26/09/2023 28th Geant4 Collaboration Meeting - Hokkaido University, Sapporo

10 0 -10 -20 -30 -40

We interfaced BLOB with Geant4 and its de-excitation model

[C. Mancini-Terracciano et al. Preliminary results coupling "Stochastic Mean Field" and "Boltzmann-Langevin One Body" models with Geant4. In: Physica Medica 67 (2019), pp. 116-122. doi: 10.1016/j.ejmp.2019.10.026.]

Order of minutes per interaction!

Graph Neural Networks for fast emulation of nuclear interaction models

 $^{\prime}C + ^{\prime\prime}C \rightarrow ^{4}He \text{ at } 62 \text{ MeV/u}$

Neural Network

Graph Neural Networks for fast emulation of nuclear interaction models

Reproduce a model output Negligible running time

Complex Physics Simulations

Sanchez-Gonzalez, Alvaro, et al. "Learning to simulate complex physics with graph networks." International Conference on Machine Learning. PMLR, 2020.

https://arxiv.org/abs/2002.09405

Github

github.com/deepmind/deepmindresearch/tree/master/learning to simulate.

Videos

https://sites.google.com/view/learning-to-simulate

Graph Neural Networks for fast emulation of nuclear interaction models

Graph Network-based Simulators (GNS)

X^{t_0} (a)

Graph Neural Networks for fast emulation of nuclear interaction models

 $ilde{X}^{t_K}$

GNN approach

Emulating the dynamics of QMD in ¹²C on ¹²C reaction at 12 MeV/u

Each nucleon is a node of the graph

Graph Neural Networks for fast emulation of nuclear interaction models

Lorenzo Arsini - 26/09/2023 28th Geant4 Collaboration Meeting - Hokkaido University, Sapporo

•

Visually satisfying results...

Graph Neural Networks for fast emulation of nuclear interaction models

... which are not Physical

Momentum on z axis

Graph Neural Networks for fast emulation of nuclear interaction models

In the **best case scenario**:

Quantities are conserved on average

Variance explodes increasing time steps

Cannot be used to infer physical quantities at the end of the reaction

Differences in the Physics

QMD, BLOB

Long range interactions Collisions

Building fully connected graphs

Feasible only for limited number of nodes

Graph Neural Networks for fast emulation of nuclear interaction models

Liquid simulations

Short range interactions Gravity

Proposed approach

QMD, BLOB

Long range interactions Collisions

Emulating the Potential acting on each node

Graph Neural Networks for fast emulation of nuclear interaction models

Liquid simulations Short range interactions Gravity

Lorenzo Arsini - 26/09/2023 28th Geant4 Collaboration Meeting - Hokkaido University, Sapporo

13

Why the Potential Three good reasons

Get more **control** on the Physics

Speed up: Potential computation is the Bottleneck

Graph Neural Networks for fast emulation of nuclear interaction models

Improving Mean Field

Why the Potential **Get more control on the Physics**

No blackbox Al solution

Enforce physical conservation laws in the model

Graph Neural Networks for fast emulation of nuclear interaction models

DL computes a known, but complex function

Why the Potential It is the Bottleneck

3 mins: computing mean field laplacian

Graph Neural Networks for fast emulation of nuclear interaction models

other

Top Hotspots

 (\sim)

This section lists the most active functions in your application. Optimizing these hotspot functions typically results in improving overall application performance.

Function	Module	CPU Time 🛛
lapla	run-orig	176.281s
erff	libm.so.6	17.201s
define_two_clouds_rp	run-orig	9.658s
sortrx	run-orig	7.018s
powf	libm.so.6	5.377s
[Others]		16.403s

Why the Potential **Improving Mean Field**

Learn any potential given particle coordinates

Graph Neural Networks for fast emulation of nuclear interaction models

No more time and complexity overload

Improve Mean Field approximation

Once you've learned the Potential

7

Full Deep Learning

Accounts for long range interactions

GNNs predicts collisions

FDL l y

> Graph Neural Networks for fast emulation of nuclear interaction models

Hybrid Models

Get F_i differentiating V_i

Integrate the equation of motion with standard methods

(Runge Kutta 4, ...)

Once you've learned the Potential

Full Deep Learning

Accounts for long range interactions

GNNs predicts collisions

No need for Fully Connected graphs

Graph Neural Networks for fast emulation of nuclear interaction models

Once you've learned the Potential

Mixing Deep Learning with standard methods

Get F_i automatically differentiating V_i

Export the DL model as a function

Graph Neural Networks for fast emulation of nuclear interaction models

Hybrid Models

Integrate the equation of motion with standard methods

Integrate it into existing code, replacing potential computation GetPotential() method in QMD

Learning the Potential: DL model **Particle-wise MLP for Potential Prediction**

Graph Neural Networks for fast emulation of nuclear interaction models

$V_{i} = \sum V_{ij} = \sum f(q_{i}, q_{j}, p_{i}, p_{j}, c_{i}, c_{j})$

Embed particle exchange symmetry

Lorenzo Arsini - 26/09/2023 28th Geant4 Collaboration Meeting - Hokkaido University, Sapporo

MLP

Learning the Potential: Preliminary results **Particle-wise MLP for Potential Prediction**

- Model: 5 layers MLP + ReLu + LayerNorm
- 23k stories Data: 10 events 24 particles : ~5 M examples
- ~3 days training on Nvidia V100 **Training:**

Mean Absolute Error: **Results:** 0.0155

Graph Neural Networks for fast emulation of nuclear interaction models

Next Steps

Full Deep Learning approach to emulate QMD dynamics

Exporting the DL models in **ONNX** or using **Libtorch**

Releasing the code for **Geant4** integration (as an example?)

Graph Neural Networks for fast emulation of nuclear interaction models

Potential prediction on BLOB

Thank you for your attention!

- Nuclear interaction models in Geant4:
 - Sophisticated models are slow
 - No dedicated model under 100 MeV/u
- **Deep Learning approach for model emulation** • State-of-the-art approach fails on QMD dynamics Potential prediction with Deep Learning • Full Deep Learning or Hybrid models

Lorenzo Arsini 26-09-2023 G4 Collaboration Meeting 2023 - Hokkaido University, Sapporo

Backup slides

Graph Neural Networks for fast emulation of nuclear interaction models

Differentiability **Training a Neural Network**

Minimization of a Loss Function $\mathscr{L}_w = |f(X) - \tilde{f}_w(X)|^2$ **Gradient descent** min $\mathscr{L}_{\mathbf{M}}$ ${\mathcal W}$

> Graph Neural Networks for fast emulation of nuclear interaction models

Deep Learning on Graphs

Graph Neural Networks for fast emulation of nuclear interaction models

Graph Neural Networks for fast emulation of nuclear interaction models

Momentum

Momentum Conservation

Conservation fails at later times

Graph Neural Networks for fast emulation of nuclear interaction models

Check Physical **conserved quantities**

while

Graph-QMD:

- Similar mean
- Wider variance

Momentum

Momentum Conservation

Graph Neural Networks for fast emulation of nuclear interaction models

Check Physical **conserved quantities**

QMD conserves momentum on average

while

Graph-QMD:

- Similar mean
- Wider variance

Conservation fails at later times

Mass center position

Mass Center Position

Conservation fails at later times

Graph Neural Networks for fast emulation of nuclear interaction models

Check Physical conserved quantities

QMD conserves mass center on average

while

Graph-QMD:

- Similar mean
- Wider variance

Mass center position

Mass Center Position

Conservation fails at later times

Graph Neural Networks for fast emulation of nuclear interaction models

Check Physical conserved quantities

MD conserves mass center on average

while

Graph-QMD:

- Similar mean
- Wider variance

