Geant4 Collaboration Meeting 2023

Geant4.jl vs. geant4_pybind
(vs. C++ geant4)

Pere Mato/CERN

https://github.com/JuliaHEP/Geant4.jl
https://github.com/HaarigerHarald/geant4 pybind

https://github.com/JuliaHEP/Geant4.jl
https://github.com/HaarigerHarald/geant4_pybind

Motivation

* geant4_pybind

« provide complete Python bindings for Geant4, such that users can write
applications only with Python (not the case for gdpython)

* Geant4.jl
« evaluate the Julia interoperability with existing large C++ packages

« provide a complete Julia bindings for Geant4, such that applications can be
written only with Julia

https://github.com/koichi-murakami/g4python

Comparison Criteria Set

1. Ease of Installation
. Friendliness of API
. Interactivity

. Running Speed

. MT Support

ON I UnEEEE D DD

. Visualisation/ Analysis capabilities

1. Ease of Installation

» L+

+ Build from sources is the most common installation method

+ Package managers such as ‘conda’ also provide Geant4

« User applications are built with CMake against Geant4 installations

+ Py

« ‘pip install’ can provide pybind wrappers linked statically with G4 libraries

» User can also locally build the wrappers extension, but this needs an installation of Geant4
+ JL

+ Everything is managed by the native Pkg package manager of Julia ‘Pkg.add(“Geant4”)’

+ Geant4.jl (Julia) --> Geant4_julia_jll (wrappers) --> Geant4_jll (g4 libraries)

2. Friendliness of API

ECr

* The API is rather complex requiring the user to provide classes that inherit from given base classes
and implement specific methods to provide all that the toolkit needs

* The order in which operations are done is critical (non declarative)
« MT adds non negligible additional burden to the user

o Py

« Better since it requires less from the user (no header files, no need to build libraries) but follows
exactly the same API as the C++

KX]1

* New minimalistic API (no boilerplate), hiding the details (doing the necessary at the right time) and
simplifying the multi-threading (e.g. per-thread calls and thread-local instances)

2. Interactivity

2L
* Limited capabilities

« FEither using the Ul or the GUI interfaces, but only being able to interact with what has been anticipated by
the developers

B Py
« Emulates the C++ user interface (UI) capabilities despite having the powerful Python REPL
“ Jupiter notebooks fully supported

KX]1

* The Julia REPL can be used to interact with any C++ wrapped class and with the new Julia interface. No
need to implement any G4UImessenger.

“ Jupiter and Pluto notebooks fully supported

4. Running Speed

2 (14

+ Reference point for both serial and MT
¢+ Py

* (G4 engine code the same as C++

» User actions/sensitive detectors implemented in
Python, which is many factors slower than C++

& Jl
* Longer initial startup time (because of JIT)

* For long runs should be as fast as C++ (within
few %)

B2a (C++) B2a.jl B2a.py

events = 1

events =100k

events =100k
(MT)

« Simple benchmark of B2a example
» with protons @ 3 GeV
* running on a Mac-mini with the M1 processor
(8 cores = 4 performance and 4 efficiency)
* C++ and Julia are basically identical taking the
initial overhead (serial) into account

5. MT Support

® Ctf

“ (lear recipes to be followed to convert a Serial application into MT

« Complexity is not completely hidden to the user

* User needs to adapt the code in detector construction, user actions, analysis, etc.
+ Py

* Not supported (Python Global Interpreter Lock - GIL)
1

* Single parameter controls the running mode (‘nthreads’) in G4JLApplication

* User needs only to provide a ‘reduce’ function to sum partial simulation custom data

6. Visualisation/Analysis capabilities

* C++
+ Geometry and event display capabilities useful for debugging. Complex to install and use.

+ Limited capabilities for analysis. Typically data is extracted, and saved to be used offline with other tools (e.g.
ROOT, Python, etc.)

+ Py
« Using the C++ geometry and event display capabilities
Full Python ecosystem available for analysis

« Tl
+ Julia visualisation packages are extremely simple to integrate (e.g. Makie.jl, Plots.jl)

+ Full Julia ecosystem available for analysis

Online analysis (e.g. active filtering) in addition to offline analysis

Summary

Ease of Installation
Friendliness of API

Interactivity

Running Speed

MT support

Visualization /
Analysis

CH++
Fair
Bad
Fair
Very Good

Good

Fair

PyBind

Very Good
Fair
Very Good
Bad
Very Bad

Good

Julia
Very Good
Good
Very Good
Very Good
Very Good

Good

10

