Summary of Parallel 2B: Geometry

J. Apostolakis

DEPARTAMENTO DE COMPUTACION

Progress in adapting the QSS Stepper to the current version of Geant4 Testing and benchmark results

Rodrigo Castro, Lucio Santi, Alejandro Mignanelli

University of Buenos Aires and ICC-CONICET, Argentina. rcastro@dc.uba.ar

Quantized State System (QSS) numerical methods

- Based on state variables quantization
- QSS methods discretize the system state variables as opposed to classical solvers which discretize the time (e.g. family of Runge-Kutta methods)
- Continuous state variables approximated by Quantized state variables
 - A quantization function is in charge of controlling error and accuracy throughout the simulation

$$\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{x}(\mathbf{t}))$$
 \Rightarrow $\dot{\mathbf{x}}(t) = \mathbf{f}(\mathbf{q}(\mathbf{t}))$
ODE system ODE quantized system

New: Logging of time series for error assessment

- Calculation of the Mean Square Error (MSE) for x(t),y(t),z(t) and the Track Length L(t)
- Thorough systematic comparison of deviation between methods for different accuracies
- Interpolation of asynchronous time series
- E.g.: QSS2 vs DOPRI

dQRel=1e-5, dQMin=1e-6

X MSE = 1.64Y MSE = 0.00072Z MSE = 0.0014L MSE = 0.0

G4 Extended Example field03

QSS2 DOPRI

Results highlights

- 11 examples tested and verified successfully:
 - o Basic (B2a, B2b, B4c, B4d, B5), Extended (with magnetic field: 01, 02, 03, 06), Advanced (ams_ECAL)
 - FullSimLight, a lightweight standalone Geant4 simulation tool that supports the full ATLAS geometry and the ATLAS magnetic field map
- Benchmarks made against G4 (ver. 11.0.0-ref-02) default stepper (DOPRI with Interpolation Driver)
- In 5 cases there exist QSS accuracy parameters that can outperform DOPRI
 - **However**, the ratio of geometry intersections per G4 step remains below 19% in all tested examples (typically around 5%) => these are **not** "QSS-friendly" scenarios (not too many intersections per step)
- Particle trajectories were compared visually using Paraview and VTK output files
- Benchmarking software: we continue developing a toolset for repeatable benchmarking that can be parameterized to produce systematic performance comparisons across G4 Steppers

Benchmark computing platform

- All experimentations carried out in CERN's OpenLab (controlled environment)
- Hardware specs: Intel(R) Xeon(R) CPU E5-2683 v4 @ 2.10GHz (64 CPUs) 64 GB RAM

Surface-based GPU model in VecGeom

Slides prepared by Andrei Gheata for the AdePT team

Bounded surface modeling

- ➤ 3D bodies represented as Boolean operation of half-spaces*
 - First and second order, infinite
 - Just intersections for convex primitives
 - \rightarrow e.g. box = $h_0 \& h_1 \& h_2 \& h_3 \& h_4 \& h_5$
 - Similarities with the **Orange** model
 - Evaluated Orange to start with
- Storing in addition the solid imprint (frame) on each surface: FramedSurface
 - Similarities with <u>detray</u> (ACTS)
 - The frame information allows avoiding to evaluate the Boolean expression for distance calculations to primitive solids

plane eq. + mask(r < R)

Surface-based GPU model in VecGeom

Bounded surface modeling

- 3D bodies represented as Boolean operation of half-spaces*
 - First and second order, infinite
 - Just intersections for convex primitives
 - \rightarrow e.g. box = $h_0 \& h_1 \& h_2 \& h_3 \& h_4 \& h_5$
 - Similarities with the **Orange** model
 - Evaluated Orange to start with
- Storing in addition the solid imprint (frame) on each surface: FramedSurface
 - Similarities with <u>detray</u> (ACTS)
 - The frame information allows avoiding to evaluate the Boolean expression for distance calculations to primitive solids

plane eq. + mask(r < R)

Outlook

- As GPU simulation gains in weight and geometry is on critical path,
 VecGeom develops dedicated surface-based GPU support
 - Surface model enriched with solid frame information
 - Collaboration with Celeritas/ORANGE team on commonalities and convergence paths
 - Transparent implementation, better work-balanced and friendlier to GPU
- Currently implemented all the features required by particle transport, for a subset of solids
 - Locate, relocate, distance and safety calculation
 - Promising preliminary numbers
- Working on extending the model, memory and performance optimization
 - Targeting cms_2018 setup working in AdePT/Celeritas by the end of the year

ORANGE surface geometry progress

Seth R Johnson, Elliott Biondo, Tom Evans Celeritas/ORANGE/Shift developers

Background

- Many nuclear engineering codes use "unbounded" surfaces and constructive solid geometry
 - MCNP, KENO, earlier codes: >40 years of history
 - · Quadric surface cards, CSG cell cards
 - · Neutral particles or no magnetic fields
- 2017: Shift GPU code (part of ECP) uses simple but efficient surface-based reactor model (nested cylinders and arrays)
- 2021: Initial GPU port for Celeritas
- 2023: GPU port integrated into Shift

User-to-runtime construction

Acceleration: bounding interval hierarchy

- Inputs: volume bounding boxes
- Recursive partitioning scheme
- Tree traversal at initialization and surface crossing
- Low memory requirements
 - Single-precision bounding boxes
 - Tree nodes are ~16B

Results

Small Modular Reactor problem

- Array of array of "pin cells"
- Water and uranium
- Neutron-only physics

Current ORANGE/VecGeom performance for TestEM3

- VecGeom 1.x navigation on GPU known to be suboptimal
- Results from Summit
 - 7 CPU Power9 cores vs 1 V100 GPU
 - 1T uniform field
 - 1300 × 10 GeV e- per event × 7 events
 - Speedup relative to CPU VecGeom

SMR on Frontier (AMD MI250)

- Template metaprogramming "multiple dispatch" faster on AMD for this problem
- ORANGE is 30% slower than "reactor toolkit" geometry
 - · RTK is extremely limited
 - Highlights performance/functionality tradeoff

Next Steps

- Optimisation
 - Reduce memory use by recognising "same" surface
 - Precalculating information for quadratic surfaces
- Extension of capabilities
 - Tracking simultaneously at multiple levels
 - Safety calculation (to determine if beneficial or needed)
 - Aggregate "poly" shapes (e.g. polygon)

In-memory Geometry Converter

Guilherme Lima

Geometry converter: what is it?

- Converter developed within the context of Celeritas, which goal is to allow a Geant4 job to offload some of the tracking to a GPU device
 - see Seth Johnson's talk for more details on the Celeritas project
- VecGeom (VECtor GEOMetry) was developed to promote SIMDvectorized algorithms. Since its algorithms could also run well on GPGPUs, it became a natural choice for HEPsim-on-GPU prototypes like Celeritas and AdePT.
 - Celeritas uses VecGeom v1.x for now, at least while surface-based systems (VecGeom 2.x and ORANGE) are being developed
- In order to offload some tracking to the GPU, the Geant4 geometry needs to be made available in VecGeom.

Validation: current status of solids.gdml

- Added support to several shapes
- Similar shape dimensions and adequate positioning and spacing
- Detailed tracking, comparing coordinates of each boundaries crossed

What?

Converting geometry from Geant4 to VecGeom

- Temporary shortcut: Geant4 geometry → GDML file → VGDML parsing → VecGeom geometry
- Not ideal: limited precision (ASCII representation of floats in the GDML file), extra configuration steps and human error modifying GDML files.
- Ideal: in-memory Geant4-to-VecGeom geometry converter
- Started from a preliminary converter, developed by S.Wenzel, J.Apostolakis et.al. as part of an effort to integrate VecGeom's SIMD-accelerated navigation into Geant4 (module G4VecGeomNav).
- We have adapted this (CPU-only) converter to the Celeritas (GPU) environment

Geometry converter: status and plans

- In-memory Geant4-to-VecGeom geometry converter is now available
 - From a preliminary prototype in G4VecGeomNav, further developed under the Celeritas environment
 - Debugged, fixed, validated and released: produces in-memory VecGeom model
 - The VecGeom model is readily available for tracking in the GPU
 - Has been (partly) ported back into the G4VecGeomNav module
 - Still to be ported: reflected shapes, multi-union, simplifying refactoring

Prospects:

- New: surface-based geometry approach, still under development see previous talks
 - → expected to be supported by this converter, no roadblocks anticipated
- More shapes to be added as needed (e.g. triggered by other complex GDML files used)
- TBD: long-term repository (requirements, dependencies, constraints)