
Guy Barrand, CNRS/IN2P3/IJCLab

G4/vis/ToolsSG
The ZB drivers

G4 Sapporo 2023 workshop

1

Guy Barrand, CNRS/IN2P3/IJCLab

vis/ToolsSG recap

• A vis driver introduced in 2021 based on a scene graph logic
developed at LAL (now IJCLab) since 2010, and for which
the code is now in g4tools (under tools/sg).

• Good part of the code is on C++ standard libs.
• Some rather light code in toolx to bind to various renderer

and windowing systems, today: OpenGL, X11, Xt, Windows,
Qt (Qt5 and Qt6).

• Few code in visualization/ToolsSG: only the “glue” to the
general/generic G4/vis system.

• It permits some plotting (see G4-Rennes slides).
• Try to keep some free “academic way” to do visualisation.

2

Guy Barrand, CNRS/IN2P3/IJCLab

vis/ToolsSG rendering

• The screen rendering is virtualised at the level of the scene
graphs, so we can introduce various ones.

• From G4/10.x we have a GL-ES screen renderer working
with the windowing systems supported by G4/vis, then the
drivers: TSG_[QT,X11,XT,WINDOWS]_GLES.

• In G4/11.1 had been introduced an offscreen renderer:
TSG_OFFSCREEN. It is based on a standalone g4tools/z-
buffer implementation. See G4-Rennes slides.

3

Guy Barrand, CNRS/IN2P3/IJCLab

TSG_<windowing>_ZB

• In fact we can use also the g4tools/z-buffer to render in a
screen window! All windowing systems permit to create a
window/widget for “pixmap” rendering.

• Since done 100% on CPU, would it be fast enough for
interactive visualisation?

• Experience show that on recent laptops it is workable! (in
particular the Apple “M” ones). Then in G4/11.2 we
propose the drivers: TSG_[QT,X11,XT,WINDOWS]_ZB

• Since not based on any external graphics package, they
could be built by default, as soon as a windowing system is
choosen.

4

Guy Barrand, CNRS/IN2P3/IJCLab

TSG_<windowing>_ZB (2)

• But do not expect too much about “rendering features” of
this driver. It is not OpenGL! For example there is no
antialiasing, triangle edging.

• But for what we ask primarily in G4/vis; draw points, lines,
triangles in 3D, it does the job. (We have transparency!).

• A user support fallback: since not on OpenGL, a TSG_ZB
driver may help to debug “nasty graphics user
configurations” seen often in the vis forum (not adapted
graphics card, visualising from a virtual machine, etc…).

5

Guy Barrand, CNRS/IN2P3/IJCLab

Else

• We handle Qt6.
• For the TSG_<windowing>_GLES drivers, based on the

OpenGL/2.x API, we saw on Macs run time clashes with
VTK which is based on OpenGL/3.x API. Next year, may
be good to move the TSG_GLES drivers to OpenGL/3.x…

• Various other improvements in the job list: 3D plotting,
have similar rendering than the G4/vis/OGL drivers, same
popup menu…

6

Guy Barrand, CNRS/IN2P3/IJCLab

Backup slides (seen at Rennes)

7

Guy Barrand, CNRS/IN2P3/IJCLab

vis/ToolsSG plotting

• tools/sg contains a “plotter node” (then based on the tools/
sg scene graph logic).

• Already used in G4/analysis for “batch plotting”.
• In G4/vis, had been introduced the G4Plotter model logic

to be able to bind and activate this g4tools plotting from
the G4/vis system and then also from the G4 command
system.

• The G4/vis/plotting knows the histos in G4/analysis.
• (Not so easy to find the right way to connect all these!).
• See examples/basic/B5 for an example.

8

Guy Barrand, CNRS/IN2P3/IJCLab

vis/ToolsSG plotting (2)

9

Guy Barrand, CNRS/IN2P3/IJCLab

vis/ToolsSG plotting (3)

• Today only 2D “flat” histo plotting, but more could come
soon… (tools::sg::plotter can do 3D “lego” plotting and
plots also functions).

• Today fully available with the ToolsSG driver, but within
G4/vis, the logic is so (in particular the way to bind the G4/
analysis histos) that other vis drivers “plotting able”
(VTK?) may bring their plotting within the same
architecture.

10

Guy Barrand, CNRS/IN2P3/IJCLab

TSG_OFFSCREEN
• Then a new “sub driver”: TSG_OFFSCREEN (beside

TSG_[QT,X11,XT,WINDOWS]_GLES).
• To produce views (.ps, .png, .jpeg) straight from pure “batch”,

without having to tie to some Windowing system.
• Purely on C++ standard libs (then no X11, Windows, Qt, OpenGL

around). It uses tools/sg/gl2ps_action but also the tools/sg/
zb_action, a zbuffer renderer already in g4tools.

• It uses tools/gl2ps, but also new tools/fpng, toojpeg to write at the
png and jpeg file formats.

• Fully thread safe (including gl2ps and the png, jpeg writers).
• g4> /vis/open TSG_OFFSCREEN
• Code is here, I hope to submit a MR soon…

11

