
ATLAS plans for Data Challenges 2024

2023-11-09

Petr Vokáč

Model for <u>HL-LHC Data Challenges</u>

- Considers use-cases driving network needs
 - Export of 350PB RAW data to T1
 - Data Reprocessing mostly at T2
- Quasi-Realtime T0 export assuming ~3 months data taking per year
 - 400Gbps for RAW data
 - additional 100Gbps for other formats
 - 2x to absorb bursts, 2x overprovisioning
 - 2Tbps estimated for ATLAS (4.8Tbps all LHC)
- Similar assumptions / bandwidth for reprocessing
- Minimal vs. flexible scenario
 - cover existing flexibility built into WFMS
 - factor $2x \Rightarrow 4$ Tbps $(T0 \rightarrow T1) + 4$ Tbps $(T1 \rightarrow T2)$
- Not considered MC production, derived date recreation, data consolidation, recovery, ...

HL-LHC Network Needs (DC21 planning)

T1 Sites	HL-LHC Minimal	HL-LHC Flexible	DC27 (100%)	DC26 (60 →50%)	DC24 (25%)	DC24 ATLAS	DC24 CMS	DC24 Alice	DC24 LHCb	DC23 (30%)	DC21 (10%)
(T0 export / T1→T2 reco)	Scenario [Gbps]	Scenario [Gbps]	[Gbps]	[Gbps]	[Gbps]	[Gbps]	[Gbps]	[Gbps]	[Gbps]	[Gbps]	[Gbps]
CA-TRIUMF	200	400	100	60	30	30	0	0	0	30	10
DE-KIT	600	1200	300	180	80	32	26	11	11	90	30
ES-PIC	200	400	100	60	30	13	13	0	3	30	10
FR-CCIN2P3	570	1140	290	170	70	33	21	7	9	90	30
IT-INFN-CNAF	690	1380	350	210	90	24	35	14	16	100	30
KR-KISTI-GSDC	50	100	30	20	10	0	0	10	0	10	0
NDGF	140	280	70	40	20	16	0	4	0	20	10
NL-T1	180	360	90	50	20	15	0	1	4	30	10
NRC-KI-T1	120	240	60	40	20	8	0	8	4	20	10
UK-T1-RAL	610	1220	310	180	80	39	21	1	18	90	30
RU-JINR-T1	200	400	100	60	30	0	30	0	0	30	10
US-T1-BNL	450	900	230	140	60	60	0	0	0	70	20
US-FNAL-CMS	800	1600	400	240	100	0	100	0	0	120	40
(transatlantic link)	1250	2500	630	380	160	60	100	0	0	190	60
Sum	4810	9620	2430	1450	640	270	246	56	65	730	240

DC21 minimal / flexible scenario

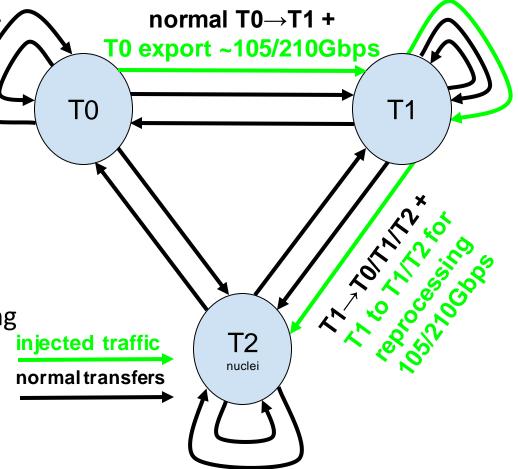
 Minor differences with respect to HL-LHC/ Data Challenges model

• T1 \rightarrow T1 transfers in addition to T1 \rightarrow T2

• transfers don't follow strictly hieratical Tx

more realistic for minimal scenario

Details and recommendations


WLCG Data Challenge 2021 description and conclusions

data injection period too long

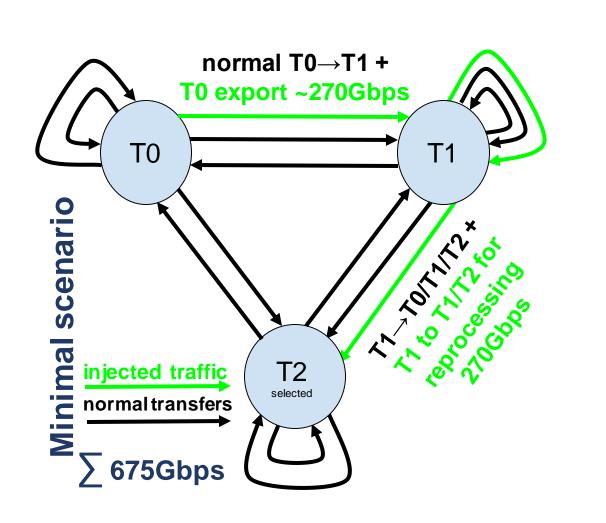
 flexible target not reached for sufficiently long time

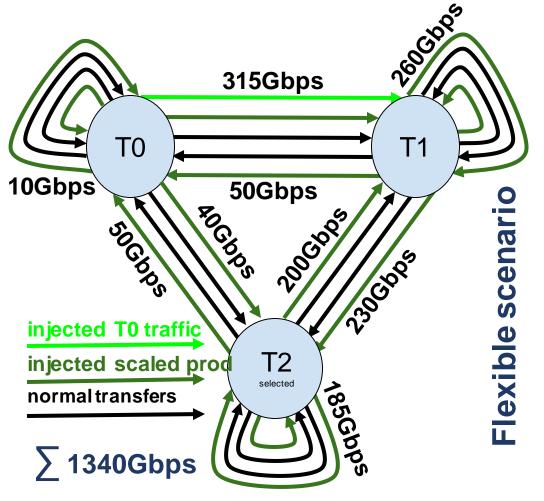
flexible could / should utilize all directions

monitoring issues / improvements

DC24 Models

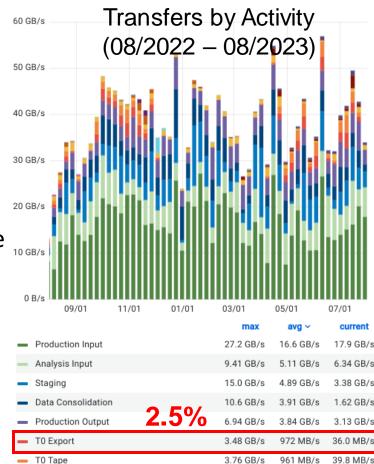
Minimal scenario

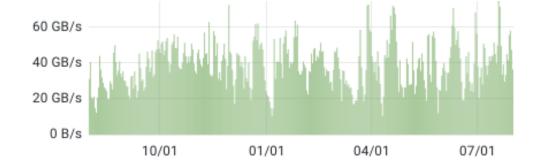

- use DC21 model (list of T2 destinations slightly different)
- T1 ingress: inject traffic from T0 to T1 to reach ATLAS target rates
 - total T1 ingress higher additional normal T1→T1 and T2→T1
- T1 egress: inject traffic from T1 to T1 and selected T2
 - total **T1 egress to T0/T1/T2** should reach **ATLAS target rates**


Flexible scenario

- scale all production input/output transfer up to 2x ATLAS min. rates for T1 egress
- Inject scaled traffic between all sites (T0/T1/T2 as source & destination)
- real data (08/2022 08/2023 production in/out averages) to model transfer patterns
- Tx ingress must match Tx egress, total ingress match egress

T1 Sites target rates for minimal scenario	DC24 ATLA S [Gbps]				
CA-TRIUMF	30				
DE-KIT	32				
ES-PIC	13				
FR-CCIN2P3	33				
IT-INFN-CNAF	24				
KR-KISTI-GSDC	0				
NDGF	16				
NL-T1	15				
NRC-KI-T1	8				
UK-T1-RAL	39				
RU-JINR-T1	0				
US-T1-BNL	60				
US-FNAL-CMS	0				
(transatlantic link)	60				
Sum	270				

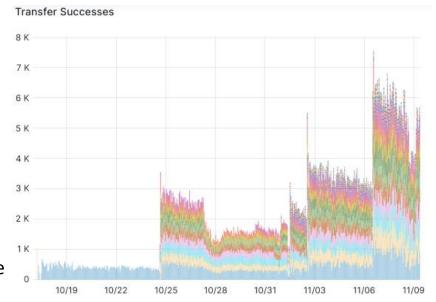

DC24 minimal vs. flexible scenario



HL-LHC Model vs. Transfer Throughput Reality

- ATLAS transfers a lot of data
 - T0 Export ~7.5Gbps is just a small fraction of all TPC transfers ~285Gbps
 - factor two higher rate (~15Gbps) during data taking periods
 - T0 Export ~2.6% vs. production input/output ~67.9%
 - 28TB data transferred 08/2022 08/2023
- HL-LHC 350TB RAW ⇒ ~ 90Gbps average T0 export
 - 12x more RAW data compared to last year T0 Export volume
 - scaling current average throughput by this factor leads to ~3.5Tbps for HL-LHC
 - close to overprovisioning assumed in HL-LHC DC Model
 - transfers with saturated links makes ops life difficult
 - factor two to cover peaks ⇒ ~7.0Tbps required by ATLAS
- Current ATLAS transfer patterns needs flexible model

How challenging is DC24



- Average transfer throughput ~285Gbps
 - minimal scenario 675Gbps, flexible scenario 1340Gbps
 - final sum for flexible scenario depend on list of participating T2
 - throughput up to 1600Gbps if all sites participate in DC24
 - hourly peaks up to 900Gbps
 - daily averages fluctuate by factor 2-3
 - transfers from NDGF already above minimal scenario
 - our model allows us to estimate transatlantic throughput
- DC24 injected throughput for minimal model at same level as daily fluctuations
 - challenging to hit target rate without going over or falling short
 - (semi-)automatic adaptable scaling of injected data volume?
 - monitoring / scaling throughput for individual T1(?)

Minimal scenario								
	Ingress	Egress						
Site	increase	increase						
	factor	factor						
CERN-PROD	1.0	7.8						
BNL-ATLAS	4.7	2.3						
FZK-LCG2	3.7	2.6						
IN2P3-CC	3.6	2.2						
INFN-T1	4.2	2.8						
NDGF-T1	2.4	1.0						
SARA-MATRIX	3.2	2.2						
pic	4.3	3.2						
RAL-LCG2	3.4	1.6						
RRC-KI-T1	5.4	5.3						
TRIUMF-LCG2	4.7	2.8						
T2 average	2.2	1.0						

Data injection

- Backfill on top of normal production transfers
 - use real data already stored at site
 - datasets with unique files and average size 3GB (check if exists at each site)
 - limit number of required deletions (number of transferred files)
 - average HL-LHC filesize is expected to be bigger compared to current average
- Injected volume
 - scaled yearly average (08/2022–08/2023) of production input/output
 - per-site egress factor coming our minimal / flexible model
 - additional throughput calculated for each link
 - transfers withing same site set to 0, compensated by increasing to other sites
 - source site → destination site: Gbps to be injected
 - minimal model: 226 links, flexible (with 16x T2): 703 links
 - number of links up to #sites^2
 - links with negligible transfer throughput can removed and compensated
- Every 15mins inject new Rucio rules with 2hour lifetime
 - ensure stable throughput rate for injected data (1h FTS monitoring resolution)
 - rule injection tool tuned for hundreds rules within 15min interval
 - this needs to be (stress) tested

Functional tests with dc_inject

Transfer rates table for sites

- T0/T1/T2 nuclei automatically included in DC24
 - T2 sites can opt-in / opt-out from DC24
- Table with DC24 details for sites
 - expected throughput, deletions and space
 - for minimal and flexible scenario
 - no additional space requirements from sites
 - it's up to Rucio to have sufficient space usable for DC
 - sites
 - verify & provide details about WAN
 - bandwidth available for ATLAS
 - not to clog upstream network with injected data
 - should provide <u>upstream network monitoring</u> (<u>campaign</u>)
 - red rows sites not yet included (must opt-in)
- all-cloud mailing list
 - finalize list of participating sites (<u>link</u>)
 - response from few clouds still missing

ATLAS DC24 transfer rates

Final T2 ingress/egress depends on number of participating T2 sites and might be in given range rows in red color: sites must explicitly ask be included in DC24 (details will be sent to all-clouds list)

eletion rates are calculated from ingress bandwidth assuming 3GB average filesize)

Table: DC24 (src: ingress / egress)			Site WAN (Gb/s)		To Total Gb/s & bandwidth				Total Gb/s & bandwidth Space [TB/24			
			Total (Gb/s)	Usable by ATLAS	T0 Export			Space [TB/24h]	T0 Export			Space [TB/24h] (deletions/hour)
Site		Cloud	` '			∑ ingress	∑ egress	(deletions/hour)		∑ ingress	∑ egress	,
CERN-PROD	T0	CERN	2100	911	270.0	27.9	291.3	0 (0k)	270.0	93.1 - 112.2	363.1	884 (13k)
T0 summary					270.0	27.9	291.3		270.0	93.1 - 112.2	363.1	
BNL-ATLAS	T1	US	400	400	60.0	82.2	60.0	764 (11k)	60.0	107.5 - 119.6	120.0	1089 (15k)
FZK-LCG2	T1	DE	400	162	32.0	61.7	32.0	431 (6k)	32.0	86.3 - 100.3	64.0	911 (13k)
IN2P3-CC	T1	FR	200	93	33.0	53.3	33.0	413 (6k)	33.0	81.6 - 95.8	66.0	861 (12k)
INFN-T1	T1	IT	300	81	24.0	39.5	24.0	319 (5k)	24.0	54.8 - 64.0	48.0	588 (8k)
NDGF-T1	Т1	ND	200	157	16.0	30.7	21.8	151 (2k)	16.0	77.9 - 96.6	32.0	842 (12k)
SARA-MATRIX	T1	NL	400	291	15.0	30.4	15.0	192 (3k)	15.0	54.4 - 66.0	30.0	604 (9k)
pic	T1	ES	200	89	13.0	21.4	13.0	170 (2k)	13.0	29.1 - 34.4	26.0	319 (5k)
RAL-LCG2	T1	UK	400	196	39.0	60.6	39.0	464 (7k)	39.0	88.5 - 100.1	78.0	861 (12k)
RRC-KI-T1 (no active T0 export)	T1	RU	200	70	00.0	13.4	8.0	109 (2k)	9.0	15.1 - 17.2	16.0	160 (2k)
TRIUMF-LCG2	T1	CA	100	100	30.0	45.9	30.0	403 (6k)	30.0	60.8 - 69.7	60.0	643 (9k)
	11	CA	100	100	270.0	439.3	275.8	403 (6K)			540.0	043 (9K)
T1 summary					270.0				270.0	655.9 - 763.8		
CA-VICTORIA-WESTGRID-T2	T2	CA	100	100		5.8 - 7.5	1.5 - 1.5	24 (0k)		3.6 - 13.4	1.5 - 11.0	104 (1k)
Australia-ATLAS	T2	CA	20	20		0.1 - 0.2	0.4 - 0.4	0 (0k)		0.1 - 2.4	0.4 - 2.6	25 (0k)
CA-WATERLOO-T2	T2	CA	40	40		2.0 - 2.4	1.2 - 1.2	7 (0k)		1.3 - 9.8	1.2 - 9.3	90 (1k)
CA-SFU-T2	T2	CA	100	100		5.9 - 7.7	5.7 - 5.7	45 (1k)		43.0 - 61.9	41.4 - 41.4	616 (9k)
praguelcg2	T2	DE	100	100		6.9 - 8.9	2.3 - 2.3	50 (1k)		16.9 - 22.9	15.5 - 15.5	197 (3k)
MPPMU	T2	DE				2.6 - 3.3	1.3 - 1.3	10 (0k)		1.7 - 9.4	1.3 - 9.1	82 (1k)
wuppertalprod	T2	DE	10	9		4.6 - 5.9	1.8 - 1.8	32 (0k)		9.9 - 10.0	6.4 - 8.8	74 (1k)
DESY-ZN	T2	DE	40	40		6.4 - 8.4	1.9 - 1.9	48 (1k)		14.3 - 19.2	12.4 - 12.4	163 (2k)
DESY-HH	T2	DE	100	100		9.1 - 10.0	1.9 - 1.9	49 (1k)		9.9 - 10.0	5.4 - 7.2	48 (1k)
UNI-FREIBURG	T2	DE	100	100		2.6 - 3.3	1.7 - 1.7	9 (0k)		1.8 - 11.3	1.7 - 11.6	101 (1k)
			10	10								
CYFRONET-LCG2	T2	DE	10	10		2.6 - 3.2	1.2 - 1.2	9 (0k)		1.7 - 9.9	1.2 - 9.4	90 (1k)
GoeGrid	T2	DE				5.2 - 6.6	1.2 - 1.2	20 (0k)		3.3 - 11.5	1.2 - 9.0	86 (1k)
IEPSAS-Kosice	T2	DE				1.1 - 1.3	0.4 - 0.4	4 (0k)		0.8 - 3.7	0.4 - 3.3	31 (0k)
LRZ-LMU	T2	DE				2.4 - 3.0	1.8 - 1.8	8 (0k)		1.6 - 12.9	1.8 - 12.5	120 (2k)
CSCS-LCG2	T2	DE	100	100		5.6 - 7.2	3.0 - 3.0	22 (0k)		3.6 - 22.3	3.0 - 21.3	198 (3k)
FMPhI-UNIBA	T2	DE				0.9 - 1.0	0.5 - 0.5	2 (0k)		0.7 - 4.2	0.5 - 4.0	37 (1k)
SAMPA	T2	ES	9	9		1.1 - 1.5	0.9 - 0.9	6 (0k)		0.6 - 8.1	0.9 - 7.3	79 (1k)
UAM-LCG2	T2	ES	10	10		0.7 - 0.9	0.4 - 0.4	4 (0k)		3.2 - 4.5	2.9 - 2.9	42 (1k)
ifae	T2	ES	200	200		2.7 - 3.4	0.7 - 0.7	11 (0k)		1.6 - 5.7	0.7 - 4.8	44 (1k)
NCG-INGRID-PT	T2	ES	9	9		0.5 - 0.7	0.2 - 0.2	2 (0k)		0.4 - 2.3	0.7 - 4.8	20 (0k)
			9	9			2.0 - 2.0					
IFIC-LCG2	T2	ES				4.1 - 5.3		17 (0k)		2.5 - 14.2	2.0 - 13.2	124 (2k)
EELA-UTFSM	T2	ES	10	10		0.2 - 0.2	0.3 - 0.3	1 (0k)		0.1 - 2.3	0.3 - 2.3	23 (0k)
TOKYO-LCG2	T2	FR	40	40		16.5 - 21.7	5.5 - 5.5	127 (2k)		30.0 - 39.7	29.8 - 29.8	317 (5k)
RO-07-NIPNE	T2	FR	100	100		4.3 - 5.4	2.6 - 2.6	29 (0k)		18.7 - 26.3	18.4 - 18.4	249 (4k)
BEIJING-LCG2	T2	FR	20	20		0.0 - 0.0	0.2 - 0.2	0 (0k)		0.0 - 1.5	0.2 - 1.3	15 (0k)
HK-LCG2	T2	FR				0.1 - 0.1	0.3 - 0.3	0 (0k)		0.1 - 2.3	0.3 - 2.3	23 (0k)
GRIF	T2	FR	100	100		7.2 - 9.4	4.2 - 4.2	32 (0k)		4.1 - 36.1	4.2 - 33.2	339 (5k)
IN2P3-LPC	T2	FR	100	100		2.4 - 3.0	1.5 - 1.5	14 (0k)		1.6 - 10.0	1.5 - 8.9	117 (2k)
IN2P3-LAPP	T2	FR	20	20		4.8 - 5.9	2.7 - 2.7	27 (0k)		16.1 - 19.9	13.6 - 15.1	174 (2k)
IN2P3-CPPM	T2	FR	100	100		2.5 - 3.2	1.6 - 1.6	17 (0k)		10.0 - 10.0	7.3 - 9.9	89 (1k)
INFN-MILANO-ATLASC	T2	IT	10	10		2.1 - 2.7	1.7 - 1.7	9 (0k)		1.2 - 10.0	1.7 - 10.0	94 (1k)
INFN-NAPOLI-ATLAS	T2	IT	100	100		3.8 - 4.8	2.2 - 2.2			15.7 - 21.9	14.9 - 14.9	205 (3k)
								24 (0k)				
INFN-ROMA1	T2	IT	10	10		2.5 - 3.2	1.1 - 1.1	17 (0k)		7.7 - 9.9	6.6 - 7.0	88 (1k)
INFN-FRASCATI	T2	IT	10	10		2.1 - 2.6	1.0 - 1.0	7 (0k)		1.5 - 8.6	1.0 - 7.9	75 (1k)
SE-SNIC-T2	T2	ND				0.0 - 0.0	0.0 - 0.0	0 (0k)		0.0 - 0.1	0.0 - 0.1	1 (0k)
UNIBE-LHEP	T2	ND				0.0 - 0.0	0.0 - 0.0	0 (0k)		0.0 - 0.0	0.0 - 0.0	0 (0k)
NIKHEF-ELPROD (no tape)	T1	NL	1000	1000		6.8 - 9.1	3.1 - 3.1	32 (0k)		3.7 - 21.5	3.1 - 21.8	188 (3k)
TECHNION-HEP	T2	NL				4.0 - 5.0	1.5 - 1.5	13 (0k)		2.8 - 13.6	1.5 - 11.6	115 (2k)
TR-10-ULAKBIM	T2	NL	9	9		0.2 - 0.3	0.9 - 0.9	1 (0k)		0.2 - 7.6	0.9 - 7.1	79 (1k)
JINR-LCG2	T2	RU	100	100		1.9 - 2.4	0.8 - 0.8	8 (0k)		1.1 - 6.1	0.8 - 5.6	53 (1k)
RU-Protvino-IHEP	T2	RU	20	20		0.4 - 0.5	0.4 - 0.4	1 (0k)		0.4 - 3.5	0.4 - 3.2	33 (0k)
UKI-LT2-RHUL	T2	UK	10	10		0.9 - 1.1	0.3 - 0.3	3 (0k)		0.6 - 1.9	0.3 - 1.6	14 (0k)
UKI-NORTHGRID-MAN-HEP	T2	UK	40	40		8.4 - 10.8	2.7 - 2.7	61 (1k)		19.0 - 25.6	18.3 - 18.3	217 (3k)
UKI-SOUTHGRID-RALPP	T2	UK	20	20		0.8 - 0.9	0.6 - 0.6	2 (0k)		0.6 - 5.1	0.6 - 4.7	48 (1k)
UKI-SCOTGRID-GLASGOW	T2	UK	20	20		2.5 - 3.2	1.3 - 1.3	10 (0k)		1.6 - 10.2	1.3 - 9.3	92 (1k)
UKI-LT2-QMUL	T2	UK				7.2 - 8.8	2.9 - 2.9	23 (0k)		5.0 - 19.7	2.9 - 19.7	156 (2k)
UKI-SCOTGRID-ECDF	T2	UK				0.8 - 1.0	0.5 - 0.5	3 (0k)		0.6 - 3.7	0.5 - 3.6	33 (0k)
UKI-NORTHGRID-LANCS-HEP	T2	UK	40	40		5.5 - 6.8	4.4 - 4.4	18 (0k)		3.8 - 35.5	4.4 - 32.0	336 (5k)
UKI-NORTHGRID-LIV-HEP	T2	UK				0.7 - 0.9	0.4 - 0.4	3 (0k)		0.5 - 3.2	0.4 - 2.8	29 (0k)
Taiwan-LCG2 (no tape)	T1	TW	20	20		3.5 - 4.1	1.7 - 1.7	9 (0k)		2.6 - 12.2	1.7 - 10.8	101 (1k)
NET2	T2	US	10	10		0.0 - 0.0	0.0 - 0.0	0 (0k)		0.0 - 0.0	0.0 - 0.0	0 (0k)
SWT2_CPB	T2	US	100	100		9.7 - 12.1	8.5 - 8.5	59 (1k)		58.8 - 83.7	60.7 - 60.7	815 (12k)
AGLT2	T2	US	100	100		9.9 - 12.7	70-70	70 (1k)		47.4 - 67.0		642 (9k)
		US	100	100		12-16	0.6 - 0.6			0.7 - 5.4		
OU_OSCER_ATLAS	T2					24.2 - 32.0	99-99	5 (0k)			0.6 - 4.8	49 (1k)
MWT2	T2	US	200	200		E HE OEIO	010 010	193 (3k)		60.0 - 82.0	67.2 - 67.2	720 (10k)
BU_NESE	T2	US				2.8 - 3.7	2.5 - 2.5	14 (0k)		1.5 - 16.7	2.5 - 17.7	161 (2k)
BU_ATLAS_Tier2	T2	US				0.1 - 0.1	0.3 - 0.3	0 (0k)		0.1 - 0.4	0.3 - 0.6	4 (0k)
T2 summary						213.1	107.2			574 - 759	420 - 732	
Summary						680.4	674.2			1323 - 1635	1323 - 1635	

Transfer throughput tests schedule

- Each test should run for at least 48 hours at the target rates
- Ensure that the timing of the tests aligns with other experiments (CMS)
 - stress network with same / similar tests at same time
 - minimal scenario: T0→T1 export ... fine for ATLAS
 - minimal scenario: $T1 \rightarrow T2$... fine for ATLAS
 - additional traffic injected in their xroot federation ... no corresponding ATLAS test
 - Either continue with "full minimal scenario" (T0 export + "reco") or flexible scenario
 - flexible scenario ... fine for ATLAS
- A lot of other <u>proposals for DC24</u>
 - which tests can be run in parallel
 - which tests must be executed in sequence

Next steps

- November 2023
 - finalize list of participating T2 sites (missing response from some clouds)
 - per-link rule injection and deletion rates (scale tests)
- December 2023
 - test dc_inject tool keep defined transfer rate on given link
- January 2024
 - verify available space at participating sites
- Before DC24
 - configure as many sites as possible to support transfers with tokens
 - configure as many sites as possible to support fireflies
 - currently possible only on storages dedicated to one VO