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neutrino mass hierarchy direct inverted

absolute neutrino mass scale

DIRAC or MAJORANA nature of neutrinos
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What What nn oscillations don’t tell usoscillations don’t tell us





Hierarchy could be identified  in a 
few years (q13 looks “big”…)



Cosmology, single and double b decay measure different combinations
of the neutrino mass eigenvalues, constraining the neutrino mass scale

In a standard three active neutrino scenario:
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Decay modes for Double Beta DecayDecay modes for Double Beta Decay

(A,Z)  (A,Z+2) + 2e- + 2ne

2n Double Beta Decay 
allowed by the Standard Model

already observed – t  1019 y

(A,Z)  (A,Z+2) + 2e-
neutrinoless Double Beta Decay (0n-DBD)
never observed (except a discussed claim)

t > 1025 y


Processe  would imply new physics beyond the Standard Model

violation of total lepton number conservation



1/t = G(Q,Z) |Mnucl|2Mbb 2

neutrinoless
Double Beta Decay 

rate

Phase 
space

Nuclear 
matrix elements Effective 

Majorana mass

how 0n-DBD is connected to neutrino mixing matrix and masses
in case of process induced by light n exchange (mass mechanism)

Mbb = ||Ue1 | 2M1 + eia1 | Ue2 | 2M2 + eia2 |Ue3 | 2M3 |

The mass mechanismThe mass mechanism



Three hurdles to leap overThree hurdles to leap over
Mbb

[eV]

Klapdor’s claim
95% c.l.

100-1000 counts/y/ton

400 meV

0.5-5 counts/y/ton

20 meV

0.1-1 counts/y/(100 ton)

1 meV



sensitivity F: lifetime corresponding to the minimum detectable number 
of events over background at a given confidence level

F  (MT / bDE)1/2

energy resolutionlive time
source mass

F  MT

The sensitivityThe sensitivity

b: specific background coefficient
[counts/(keV kg y)]

If (b DE X exposure) < 1, then the background can be considered ~0 

The order of magnitude of the target bakground is  
≤ 1 counts / y ton to explore inverted hierarchy



Isotopic abundance (%)
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Choice of the nuclideChoice of the nuclide

Nuclear Matrix Element

No super-favoured isotope !

Sign of convergence! 



High energy resolution («1%)

No tracking capability
Easy to reject 2n DBD background

Low energy resolution (≥1%)

Tracking / topology capability
Easy to approach zero background

(with the exception of 

2n DBD component)
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Easy to approach the ton scale
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source
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Source  Detector

Easy to get tracking capability

GERDA – 76Ge
Array of enriched Ge diodes operated in liquid argon
First phase: 18 Kg; second phase: 40 Kg - LNGS
Proved energy resolution: 0.16 % FWHM
CUORE – 130Te
Array  of low temperature natural TeO2 calorimeters operated at 10 mK
First step: 200 Kg (2014) – LNGS – it can take advantage from Cuoricino experience
Proved energy resolution: 0.25 % FWHM
LUCIFER / scintillating bolometers – 82Se – 116Cd – 100Mo 
Array of scintillating bolometers operated at 10 mK (ZnSe or CdWO4 or ZnMoO4)
First step: ~ 10 Kg (2014) – LNGS – essentially R&D project to fully test the principle
Proved energy resolution: 0.3 - 1 % FWHM

Class 1 experimentsClass 1 experiments



GERDAGERDA –– phase 1phase 1
Technique/location: bare enriched Ge diodes in liquid argon – LNGS (Italy)

Source: Ge - 17.66 kg – 76Ge enriched at 86% - 1.2x1026 nuclides

Sensitivity: designed to scrutinize Klapdor‟s claim in ~1 year data taking

Timeline: GERDA phase 1 is working now with normal Ge diodes for debugging

Background target: 0.01 counts/(keV y kg)

Background contribution from 42Ar higher than expected 

→ now improved, insertion of enriched detector is ongoing

CLASS 1



GERDAGERDA –– phase 1 phase 1 
4242Ar contaminationAr contamination

42Ar is present in natural Ar due to cosmogenic production

Decay scheme

Considered in the proposal and contribution evaluated (30 mBq/kg)

However:  1) natural concentration underestimated 

2) migration of the charged daughter ions due to detector

E field   → higher concentration close to detector

Measures:  1) introduction of a mini-shroud to shield the detectors

2) change of detector field configuration

The problem is mitigated

CLASS 1

42Ar (33 yr, Qβ= 600 keV)                      42K (12.36 h, Qβ = 3.52 MeV)

Eγ = 1.524 MeV,…



GERDAGERDA –– phase 1 phase 1 –– 4242ArAr
CLASS 1

w/o mini-shroud with mini-shroud

encapsulation
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GERDAGERDA –– phase 1 phase 1 –– statusstatus
CLASS 1

 Detector commissioning with non-enriched detectors started in 
summer 2010

 12 commissioning runs with different detectors, read-out 
schemes, E-field configurations 
(best resolution: DEFWHM=3.6 keV at 2.6 MeV)

 Background with non-enriched detectors currently at 0.05 
cts/(keV kg year). Goal for Phase I: 0.01 cts/(keV kg year).

 Deployment of first string with enriched detectors: this week

 After summer: development of the remaining enriched detectors 

Phase I soon will study background with enriched detectors 
 start of Phase I physics run



GERDAGERDA –– phase phase 2 and 32 and 3
CLASS 1

<24 - 41 meV

<75 - 129 meV

KK

assuming
|M0n|=2.99-8.99 
[Smol&Grab PRC‟10]
and 86% enrichment

O(10-3) O(10-4)
required for „background free‟ 
exp. with DE~3.3 keV (FWHM): counts/(kg·y·keV)

Background requirement for GERDA/Majorana:
Background reduction by factor 102 - 103 required w.r. to precursor exps.

GERDA
Phase II/

Majorana
Demonst.

GERDA
Phase I

GERDA 
Phase III/
Majorana

2·1026 (90 % CL)

3·1025 (90 % CL)

(no event in ROI)

2·1027 (90 % CL)



GERDAGERDA –– elements for phase 2elements for phase 2
CLASS 1

 Production of prototypes with depleted germanium at CANBERRA has 
been successful
Production of detector for phase 2 in 2012 (30 additional kg)

 Pulse shape discrimination with p-type BEGe detectors

Single site event Multi site event

 Possible instrumentation of Liquid argon



CUORECUORE
CLASS 1

Technique/location: natural TeO2 bolometers at 10 mK– LNGS (Italy)

 evolution of Cuoricino

Source: TeO2 – 741 kg with natural tellurium - 9.5x1026  nuclides of 130Te

Sensitivity: 35 – 82 meV (with target background ~ 10-2 counts/(keV kg y))

Timeline: first CUORE tower in 2011 – data taking with full apparatus in 2014

Structure of the detector

Detector in the custom fridge

CUORE-0 under commissioning



CUORE CUORE -- statusstatus
CLASS 1

 The production of the crystals in SICCAS (Shanghai) is going on smoothly

 The crystals are tested as bolometers in CUORE 
configuration by sampling.
Excellent results are routinely obtained in:

- Bolometric performance
- Radiopurity

 Only concern for background comes from alpha surface radioactivity 
in Copper  Cleaning procedure are well established – a background 
of the order of 5x10-2 was measured in a dedicated test in hall A –
this number will be lower in CUORE just for geometry

 The CUORE assembly line is ready and will be 
used this summer to assemble CUORE-0

 The first base temperature test of the CUORE cryostat is foreseen for 
2012

3.1 keV 

FWHM at 

2.6 MeV



LUCIFER / scintillatingLUCIFER / scintillating bolometersbolometers
CLASS 1

Technique/location: scintillating bolometers containing high Q-value candidates

(82Se, 100Mo, 116Cd)  high phase space, beyond natural gamma radioactivity

Site: for LUCIFER, LNGS is the most natural location;  possibility of a 

scintillating bolometer section in EURECA (Modane extension)

Source: ZnSe, ZnMoO4, CdWO4 single crystals

Sensitivity: for LUCIFER, 10 kg enriched Se is feasible with present funding 

corresponding to ~100 meV (with target background ~ 10-3 counts/(keV kg y))

Timeline: LUCIFER ready to take data within 2015 – main difficulty: quality and 

reproducibility of the crystals  enrichment, purification, crystal growth chain

Basic idea: Alphas emit a different
amount of light with respect to
beta/gamma of the same energy
(normally lower → a QF < 1, but
not in all cases).

Alpha background can be fully
rejected in a region where it
dominates



SScintillatingcintillating bolometersbolometers
CLASS 1

The Molybdenum way is very promising, based on  ZnMoO4 crystals
Search is active also with CaMoO4 crystals (AMORE experiment)

Excellent alpha / beta separation in a ZnMoO4

prototype operated at CSNSM Orsay
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Source  Detector

Easy to get tracking capability

High energy resolution («1%)

No tracking capability
Easy to reject 2n DBD background

Low energy resolution (≥1%)

Tracking / topology capability
Easy to approach zero background

(with the exception of 

2n DBD component)

NEXT – 136Xe
High pressure gas TPC
Total mass: 100 kg
Aims at energy resolution down to 1%  FWHM exploiting  electroluminesce in high field region
NEXT-10, a 10kg prototype, should provide data in  CANFRANC in 2013
COBRA - 116Cd competing candidate – 9 bb isotopes
Array of 116Cd enriched CdZnTe of semiconductor detectors at room temperatures
Small scale prototype at LNGS
Proved energy resolution: 1.9% FWHM
Pixellization can provide tracking capability

Class 2 experimentsClass 2 experiments



NEXTNEXT
CLASS 2

Technique/location: High pressure (~10 bar) gaseous Xe TPC in Canfranc

Source: 136Xe  - 100 Kg of enriched Xe in Canfranc

Sensitivity: target background ~ 2x10-4 counts/(keV kg y) – target energy 

resolution: 1% FWHM at the Q-value  ~60 meV with 1 (ton x y) exposure

Timeline: complete NEXT1 (1 kg prototypes) in 2011 – start construction larger 

systems in 2012 – complete construction final detector in 2013 –depleted Xenon 

run in 2014

Basic idea: exploit electroluminescence in Xenon to get high energy 
resolution and tracking

Cathode: 
energy 

measurement 
with PMTs

Anode: 
position 

measurement 
with SiPMs



NEXTNEXT
CLASS 2

Energy resolution Topology

Simulation of DBD event
137Cs line measured in LBNL 
prototype  1.8% FWHM

corresponding to <1% at Q-value



COBRACOBRA
CLASS 2

Technique/location: CdZnTe crystals operated as semiconductor detectors - LNGS

Source: nine DBD candidates, but focus on 116Cd – the crystals are small (typically 1 

cm side cubes) and the detector is operated with high granularity

Status: present background at the Q-value: 5 counts/(keV kg y) but massive 

reduction is expected thanks to pixellization (solid state TPC) which allows particle 

identification.

 Upgrade of 64 element array in LNGS – pulse shape and multipixel

MuonsElectrons

256x256 pixels, 55mm 

Alphas

Preselected samples
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Easy to approach the ton scale

e-

e-

source

detector

detector

Source  Detector

Easy to get tracking capability

High energy resolution («1%)

No tracking capability
Easy to reject 2n DBD background

Low energy resolution ≥1%)

Tracking capability
Easy to approach zero background

(with the exception of 

2n DBD component)

SUPERNEMO - 82Se or 150Nd
Modules with source foils, tracking (drift chamber in Geiger mode) and calorimetric (low Z scintillator) 
sections
Magnetic field for charge sign
Possible configuration: 20 modules with 5 kg source for each module  100 Kg in Modane extension
Energy resolution: 4 % FWHM
it can take advantage of NEMO3 experience

Class 3 experimentsClass 3 experiments



SuperNEMOSuperNEMO
CLASS 3

Technique/location:
tracking Geiger cells+ plastic scintillator  –
Modane (France) – evolution of NEMO-3

Source: choice flexibility (82Se, 150Nd, 48Ca) 
 options (assuming 100 kg of materials):
- 7x1026 82Se nuclides (baseline)
- 2.5x1026 150Nd nuclides (it depends on the 
possibility of laser isotope separation – now 
revival at CEA)
It is in the form of a thin foil (~40 mg/cm2)

Sensitivity: 53 – 145 meV (for 82Se)

Status/Timeline: demonstrator module in 2014 
(~7 kg)
After that, construction of 20 modules 
estimated in 2 years 



SuperNEMOSuperNEMO -- challengeschallenges
CLASS 3

Improvements wrt NEMO3

Demonstrated

This target contamination corresponds to 1 event /(100 kg y) in the ROI
(same level expected from 2n DBD)

Crucial: process of purification of Se and subsequent diagnostic

BiPo3 in  in Canfranc  start data taking at the end of 2011



SuperNEMOSuperNEMO -- featuresfeatures
CLASS 3

Unique in its capability to 
reconstruct electron tracks

Very useful to identify 
the 0n DBD mechanism 
and exotic processes

BUT it is not easy to achieve 1 ton sensitive mass 
(importance of 150Nd option)



Direct measurement of Direct measurement of nn massmass

A beta spectrum is modified by a finite n mass close to the end-point Q

E – Q [eV]

Tritium

as an example



ApproachesApproaches

 determine all the “visible” energy of the decay with 
a high resolution low energy “nuclear” detector 

 cryogenic microcalorimeters

 present achieved sensitivity:  10 eV

 future planned sensitivity: under study

source  detector (the source is 187Re - Q=2.5 keV)

 measurement of the electron energy out of the source

 selection of the electrons by an electrostatic spectrometer
 and magnetic adiabatic collimation

 future planned sensitivity:  0.2 eV

source separate from detector (the source is T - Q=18.6 keV)

MARE

KATRIN
Karlsruhe

Milano,
Genoa



KATRIN statusKATRIN status

Tritium bearing components Spectrometer and detector

 Tritium close cycle operational in 2011 (40 g of T)
 Windowless T gaseous source: presently demonstrator (main system: 2013)
 T retention system: early 2012
 Pre-spectrometer: validating and refining the design
 Main spectrometer: electrode installed – start commissioning in early 2012

(issue: background induced by 219.220Rn alpha decays)
 Focal plane system: commissioning in early 2012

Sensitivity to sterile neutrino: in 3+1 scenario,
3s detection by kink in beta spectrum if |Ues|

2> 0.055

Start data taking: 2013/2014



MARE statusMARE status

Semiconductors
Single element

Array of 10 elements

Statistics: N = 106 events

s(Mb)


20 eV

Precursors (MANU, MIBETA)

Transition Edge Sensors

Semiconductors

Arrays of 300 elements

Statistics: N = 1010 events

s(Mb)


2 eV

MARE-1 – commissioning in Milan – DE ~ 10 – 30 eV – tR ~ 100 ms

Transition Edge Sensors

Magnetic calorimeters

Kinetic Inductance Det.

Arrays of 50000 elementi

Statistics: N = 1013 events

s(Mb)


0.2 eV

MARE-2 –R&D in Genoa – DE ~ 5 - 10 eV – tR ~ 1 – 10 ms

Alternative to 187Re : 163Ho EC source to be implanted in the detector

Sensitivity to ~1 keV sterile neutrinos



ConclusionsConclusions

In the next five years in Europe:

 3 / 4 projects in DBD could approach the inverted 
hierarchy region

 Technology to explore inverted hierarchy region
should be established soon

 KATRIN will take data

 Rich R&D program in various sectors could provide new 
solutions to increase the sensitivity


