

The next generation projects in Deep Underground Laboratories 30 June 2011 - 2 July 2011, Zaragoza, Spain

Neutrino mass in Europe

Andrea Giuliani

CSNSM, CNRS/IN2P3

France

What v oscillations don't tell us

1 absolute neutrino mass scale

② neutrino mass hierarchy -

Hierarchy could be identified in a few years (θ_{13} looks "big"...)

③ DIRAC or MAJQRANA nature of neutrinos

$$\nu \neq \overline{\nu}$$

$$v \equiv \overline{v}$$

Cosmology, single and double ß decay

Cosmology, single and double β decay measure different combinations of the neutrino mass eigenvalues, constraining the neutrino mass scale

Decay modes for Double Beta Decay

1

(2)

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2\overline{v_{e}}$

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-}$

 $\begin{array}{c} & \textbf{2v Double Beta Decay} \\ & \text{allowed by the Standard Model} \\ & \text{already observed} - \tau \geq 10^{19} \text{ y} \end{array}$

neutrinoless Double Beta Decay (Ov-DBD) never observed (except a discussed claim) τ > 10²⁵ y

Processe ② would imply new physics beyond the Standard Model

violation of total lepton number conservation

The mass mechanism

how Ov-DBD is connected to neutrino mixing matrix and masses in case of process induced by light v exchange (mass mechanism)

Three hurdles to leap over

The sensitivity

sensitivity F: lifetime corresponding to the minimum detectable number of events over background at a given confidence level

If (b ΔE X exposure) < 1, then the background can be considered ~0

$$F \propto MT$$

The order of magnitude of the target bakground is <u>< 1 counts / y ton to explore inverted hierarchy</u>

Choice of the nuclide

Class 1 experiments

e-

Source = Detector

Easy to approach the ton scale

High energy resolution («1%) No tracking capability Easy to reject 2v DBD background

GERDA – ⁷⁶Ge

Array of enriched Ge diodes operated in liquid argon First phase: 18 Kg; second phase: 40 Kg - LNGS Proved energy resolution: 0.16 % FWHM

CUORE – ¹³⁰Te

Array of low temperature natural TeO₂ calorimeters operated at 10 mK First step: 200 Kg (2014) - LNGS - it can take advantage from Cuoricino experience Proved energy resolution: 0.25 % FWHM

LUCIFER / scintillating bolometers - ⁸²Se - ¹¹⁶Cd - ¹⁰⁰Mo

Array of scintillating bolometers operated at 10 mK (ZnSe or CdWO₄ or ZnMoO₄) First step: ~ 10 Kg (2014) - LNGS - essentially R&D project to fully test the principle Proved energy resolution: 0.3 - 1 % FWHM

Easy to get tracking capability

(with the exception of 2v DBD component)

6)

GERDA – phase 1

CLASS 1

Technique/location: bare enriched Ge diodes in liquid argon – LNGS (Italy) Source: Ge - 17.66 kg - ⁷⁶Ge enriched at 86% - **1.2×10²⁶ nuclides** Sensitivity: designed to scrutinize Klapdor's claim in ~1 year data taking Timeline: GERDA phase 1 is working now with normal Ge diodes for debugging Background target: 0.01 counts/(keV y kg) Background contribution from ⁴²Ar higher than expected \rightarrow now improved, insertion of enriched detector is ongoing

GERDA - phase 1 ⁴²Ar contamination

⁴²Ar is present in natural Ar due to cosmogenic production Decay scheme

⁴²Ar (33 yr, Q β = 600 keV) \longrightarrow ⁴²K (12.36 h, Q β = 3.52 MeV) Ey = 1.524 MeV,...

Considered in the proposal and contribution evaluated (30 µBq/kg) However: 1) natural concentration underestimated 2) migration of the charged daughter ions due to detector E field → higher concentration close to detector

Measures: 1) introduction of a mini-shroud to shield the detectors 2) change of detector field configuration The problem is mitigated

GERDA – phase 1 – ⁴²Ar

CLASS 1

Run History

CLASS 1

GERDA – phase 1 – status

Detector commissioning with non-enriched detectors started in summer 2010

▶ 12 commissioning runs with different detectors, read-out schemes, E-field configurations (best resolution: △E_{FWHM}=3.6 keV at 2.6 MeV)

Background with non-enriched detectors currently at 0.05 cts/(keV kg year). Goal for Phase I: 0.01 cts/(keV kg year).

Deployment of first string with enriched detectors: this week

> After summer: development of the remaining enriched detectors

Phase I soon will study background with enriched detectors \Rightarrow start of Phase I physics run

GERDA – phase 2 and 3

exp. with $\Delta E \sim 3.3$ keV (FWHM): O(

O(10-3) O(10-4) counts/(kg·y·keV)

CLASS 1

Background requirement for GERDA/Majorana: $^{\prime}$ \Rightarrow Background reduction by factor 10² - 10³ required w.r. to precursor exps.

GERDA – elements for phase 2

CLASS 1

 Production of prototypes with depleted germanium at CANBERRA has been successful
Production of detector for phase 2 in 2012 (30 additional kg)

Pulse shape discrimination with p-type BEGe detectors

Possible instrumentation of Liquid argon

CUORE

CLASS 1

Technique/location: natural TeO₂ bolometers at 10 mK- LNGS (Italy) \Rightarrow evolution of Cuoricino Source: TeO₂ - 741 kg with natural tellurium - 9.5×10²⁶ nuclides of ¹³⁰Te Sensitivity: 35 - 82 meV (with target background ~ 10⁻² counts/(keV kg y)) Timeline: first CUORE tower in 2011 - data taking with full apparatus in 2014

CUORE - status

> The production of the crystals in SICCAS (Shanghai) is going on smoothly

- The crystals are tested as bolometers in CUORE configuration by sampling. Excellent results are routinely obtained in: - Bolometric performance
 - Radiopurity

CLASS

- The CUORE assembly line is ready and will be used this summer to assemble CUORE-0
- The first base temperature test of the CUORE cryostat is foreseen for 2012

Only concern for background comes from alpha surface radioactivity in Copper => Cleaning procedure are well established - a background of the order of 5×10⁻² was measured in a dedicated test in hall A this number will be lower in CUORE just for geometry

CLASS 1

LUCIFER / scintillating bolometers

Technique/location: scintillating bolometers containing high Q-value candidates (82 Se, 100 Mo, 116 Cd) \Rightarrow high phase space, beyond natural gamma radioactivity Site: for LUCIFER, LNGS is the most natural location; possibility of a scintillating bolometer section in EURECA (Modane extension) Source: ZnSe, ZnMoO₄, CdWO₄ single crystals Sensitivity: for LUCIFER, 10 kg enriched Se is feasible with present funding corresponding to ~100 meV (with target background ~ 10⁻³ counts/(keV kg y)) Timeline: LUCIFER ready to take data within 2015 - main difficulty: quality and reproducibility of the crystals \Rightarrow enrichment, purification, crystal growth chain

Basic idea: Alphas emit a different amount of light with respect to beta/gamma of the same energy (normally lower $\rightarrow \alpha \ QF < 1$, but not in all cases).

Alpha background can be fully rejected in a region where it dominates

Scintillating bolometers

CLASS

The Molybdenum way is very promising, based on $ZnMoO_4$ crystals Search is active also with $CaMoO_4$ crystals (AMORE experiment)

CLASS 2

NEXT

Technique/location: High pressure (~10 bar) gaseous Xe TPC in Canfranc **Source**: ¹³⁶Xe - 100 Kg of enriched Xe in Canfranc **Sensitivity**: target background ~ 2×10⁻⁴ counts/(keV kg y) - target energy resolution: 1% FWHM at the Q-value \Rightarrow ~60 meV with 1 (ton x y) exposure **Timeline**: complete NEXT1 (1 kg prototypes) in 2011 - start construction larger systems in 2012 - complete construction final detector in 2013 -depleted Xenon run in 2014

Basic idea: exploit electroluminescence in Xenon to get high energy resolution and tracking

Anode: position measurement with SiPMs

Energy resolution

 ^{137}Cs line measured in LBNL prototype \Rightarrow 1.8% FWHM corresponding to <1% at Q-value

Topology

Simulation of DBD event

CLASS 2

Technique/location: CdZnTe crystals operated as semiconductor detectors - LNGS **Source**: nine DBD candidates, but focus on ¹¹⁶Cd - the crystals are small (typically 1 cm side cubes) and the detector is operated with high granularity **Status**: present background at the Q-value: 5 counts/(keV kg y) but massive reduction is expected thanks to pixellization (solid state TPC) which allows particle identification.

⇒ Upgrade of 64 element array in LNGS - pulse shape and multipixel

SUPERNEMO - ⁸²Se or ¹⁵⁰Nd

Modules with source foils, tracking (drift chamber in Geiger mode) and calorimetric (low Z scintillator) sections

Magnetic field for charge sign

Possible configuration: 20 modules with 5 kg source for each module \Rightarrow 100 Kg in Modane extension Energy resolution: 4 % FWHM

it can take advantage of NEMO3 experience

CLASS 3

SuperNEMO

Technique/location:

tracking Geiger cells+ plastic scintillator – Modane (France) – evolution of NEMO-3

Source: choice flexibility (⁸²Se, ¹⁵⁰Nd, ⁴⁸Ca) \Rightarrow options (assuming 100 kg of materials): - 7x10^{26 82}Se nuclides (baseline) - 2.5x10^{26 150}Nd nuclides (it depends on the possibility of laser isotope separation - now revival at CEA)

It is in the form of a thin foil (~40 mg/cm²)

Sensitivity: 53 - 145 meV (for ⁸²Se)

Status/Timeline: demonstrator module in 2014 (~7 kg) After that, construction of 20 modules estimated in 2 years

SuperNEMO - challenges

CLASS 3

Improvements wrt NEMO3

Isotope	¹⁰⁰ Mo	⁸² Se or other
Mass (kg)	7	100
Exposure (kg.yr)	31.5	500
Efficiency $0\nu\beta\beta$ (%)	18	$\simeq 30$
Energy resolution at 1 MeV e^- (calorimeter), FWHM (%)	~ 15	~ 8
208 Tl in foil ($\mu \mathrm{Bq/kg}$)	< 20	< 2
214 Bi in foil ($\mu \mathrm{Bq/kg}$)	< 300	<10 (only for $^{82}\mathrm{Se})$
222 Rn in gas (mBq/m ³)	$\simeq 5$	< 0.2 (only for ⁸² Se)
220 Rn in gas (mBq/m ³)	$\simeq 0.15$	<0.03 (only for $^{82}\mathrm{Se})$

Demonstrated

This target contamination corresponds to 1 event /(100 kg y) in the ROI (same level expected from 2v DBD)

Crucial: process of purification of Se and subsequent diagnostic

BiPo3 in in Canfranc \Rightarrow start data taking at the end of 2011

SuperNEMO - features

Unique in its capability to reconstruct electron tracks

Very useful to identify the Ov DBD mechanism and exotic processes

CLASS 3

BUT it is not easy to achieve 1 ton sensitive mass (importance of ¹⁵⁰Nd option)

Direct measurement of v mass

A beta spectrum is modified by a finite v mass close to the end-point Q

Approaches

① source separate from detector (the source is T - Q=18.6 keV)

cryogenic microcalorimeters

Milano,

Genoa

excitation energies

present achieved sensitivity: ~ 10 eV

future planned sensitivity: under study

KATRIN status

Tritium bearing components

Spectrometer and detector

- > Tritium close cycle operational in 2011 (40 g of T)
- Windowless T gaseous source: presently demonstrator (main system: 2013)
- T retention system: early 2012
- Pre-spectrometer: validating and refining the design
- Main spectrometer: electrode installed start commissioning in early 2012 (issue: background induced by ^{219.220}Rn alpha decays)
- Focal plane system: commissioning in early 2012

sensitivity (90% CL) m(v) < 200 meV

Sensitivity to sterile neutrino: in 3+1 scenario, 3σ detection by kink in beta spectrum if |U_{es}|²> 0.055

discovery potential $m(v) = 350 \text{ meV} (5\sigma)$

Start data taking: 2013/2014

MARE status

Precursors (MANU, MIBETA)

Semiconductors

Single element Array of 10 elements Statistics: N = 10⁶ events

MARE-1 - commissioning in Milan - $\Delta E \sim 10$ - 30 eV - $\tau_R \sim 100 \ \mu s$

Transition Edge Sensors Semiconductors Arrays of 300 elements Statistics: N = 10¹⁰ events

MARE-2 -R&D in Genoa - $\Delta E \sim 5$ - 10 eV - $\tau_R \sim 1$ - 10 μs

Transition Edge Sensors Magnetic calorimeters Kinetic Inductance Det.

Arrays of 50000 elementi Statistics: N = 10¹³ events $\sigma(\langle M_{\beta} \rangle)$ ~ 0.2 eV

Alternative to ¹⁸⁷Re : ¹⁶³Ho EC source to be implanted in the detector

Sensitivity to ~1 keV sterile neutrinos

Conclusions

In the next five years in Europe:

3 / 4 projects in DBD could approach the inverted hierarchy region

Technology to explore inverted hierarchy region should be established soon

KATRIN will take data

Rich R&D program in various sectors could provide new solutions to increase the sensitivity