



# Gran Sasso Laboratory – Status and perspectives

Luciano Pandola – INFN Gran Sasso National Laboratory

Aspera Worshop on Next Generation Projects in Deep Underground Laboratories, Zaragoza, July 1<sup>st</sup>, 2011

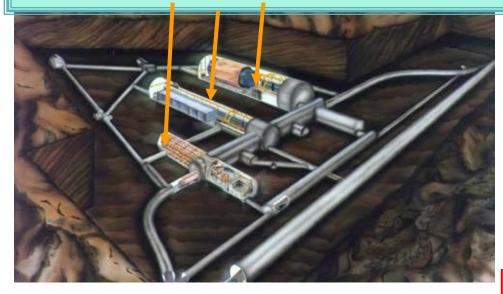


# Highlights from Gran Sasso Laboratory



- Largest underground laboratory in the world
  - Run by INFN under the Gran Sasso Mountain, Italy
  - 120 km far from Rome, completed 1987
  - International scientific community (1000 users per year)
  - Permanent staff: 82 + 19 temporary positions

### > Neutrino physics


- Neutrinoless double beta decay
- > Solar, geo and supernova neutrinos
- > CNGS neutrinos
- Dark matter searches
- > Nuclear Astrophysics
- > Geophysics and environmental physics
- > Biology

# **Gran Sasso Laboratory**

3 main halls  $A B C \sim 100 \times 20 \text{ m}^2 \text{ (h 20 m)}$ 

#### **Muon Flux**

 $3.0\ 10^{-4}\ \mu\ m^{-2}\ s^{-1}$ 



#### **Neutron Flux**

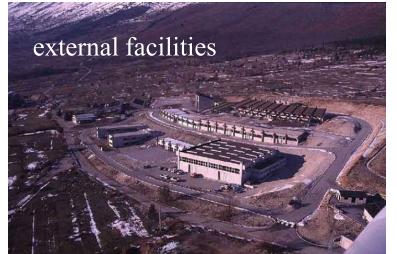
 $2.92 \ 10^{-6} \ n \ cm^{-2} \ s^{-1}$  (0-1 keV)

 $0.86 \ 10^{-6} \ n \ cm^{-2} \ s^{-1}$  (> 1 keV)

<u>Depth</u>: 1400 m (3800 m w.e.)

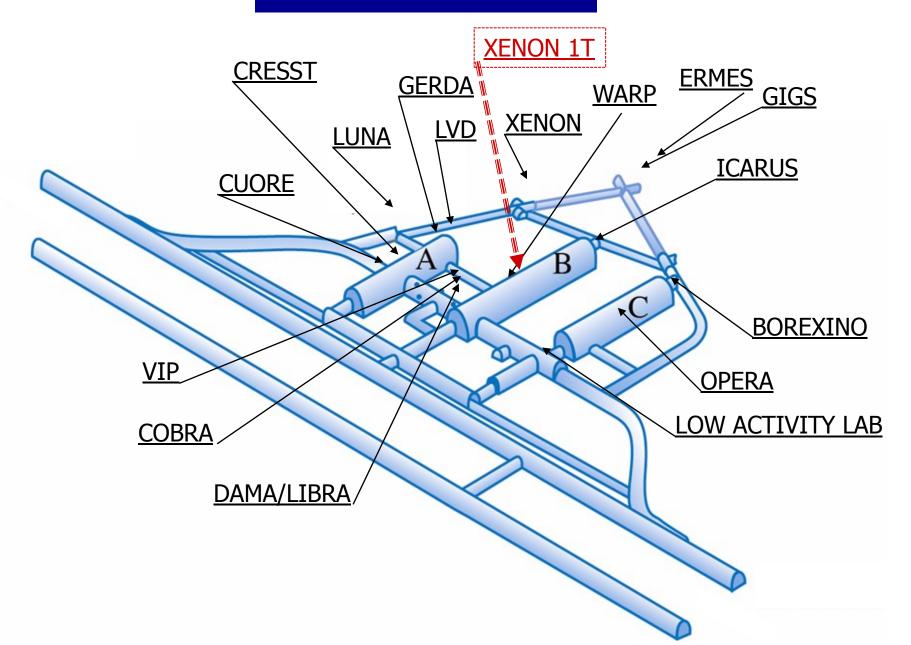
<u>Surface</u>: 17800 m<sup>2</sup>

<u>Volume</u>: **180000** m<sup>3</sup>


Rn in air: 20-80 Bq/m<sup>3</sup>

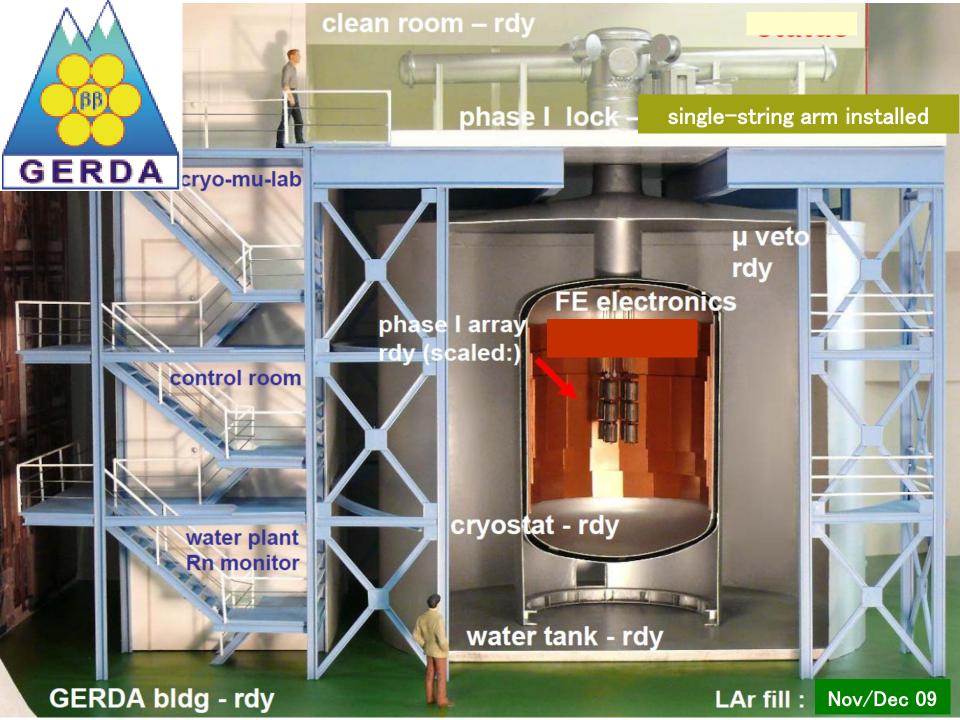
ISO 14001

<u>Ventilation</u>: 1 Lab volume/3 h


Electrical power: 1300 kW

Access: horizontal



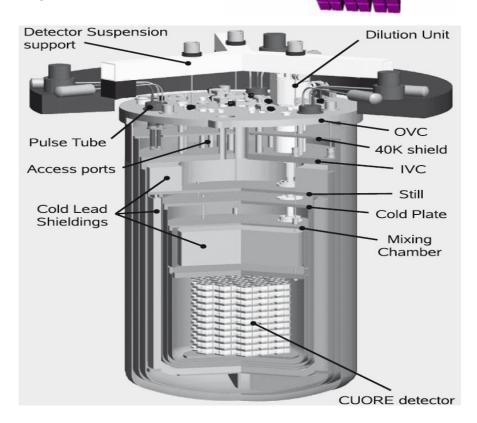

## **OCCUPANCY**





# Neutrinoless Double Beta Decay

- ➤ <u>LNGS program</u>: complementary approaches concerning isotopes and techniques
- > GERDA: HPGe detectors enriched in <sup>76</sup>Ge
  - commissioning run with <sup>nat</sup>Ge detectors
  - start data taking with enrGe detectors during the summer
- > CUORE: TeO<sub>2</sub> bolometers (130Te)
  - construction phase. Expect data taking in 2014
  - among the firsts able to probe the inverted neutrino mass hierarchy
  - Lucifer R&D project to further suppress background: scintillating bolometers
- > COBRA R&D: CdZnTe detectors



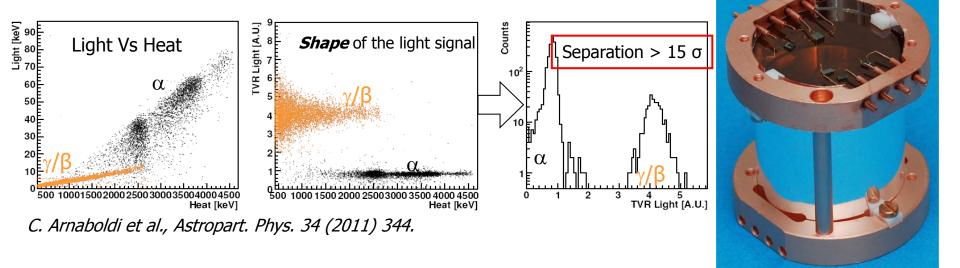

## The CUORE experiment

The CUORE experiment is able to detect  $\beta\beta$  decay of <sup>130</sup>Te by using cryogenic detectors made of TeO<sub>2</sub> crystals

The prototype CUORICINO, already installed at LNGS, demonstrated the feasibility of the large scale detector **CUORE** that will be **in operation in 2014** 






### **The Lucifer R&D Project**



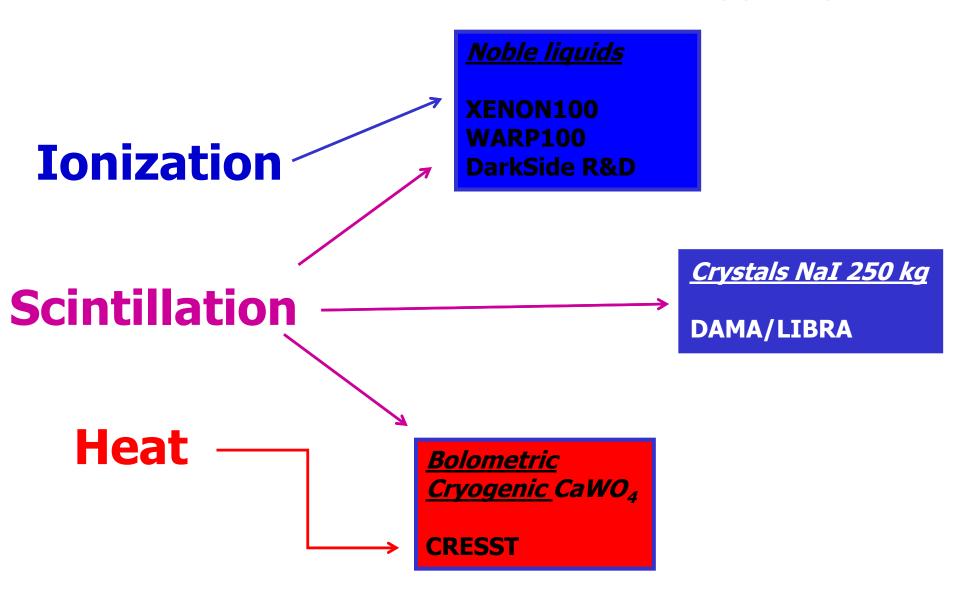
The **Lucifer Project** is an EU Advanced Grant aiming to the construction of a ββ Scintillating bolometer experiment

Lucifer will consist of an array of enriched ZnSe crystals, total <sup>82</sup>Se mass of **~ 10 kg** ZnSe is a "puzzling" promising scintillating crystal, being the only scintillator with an

"inverse" Scintillating QF (approx. 4)



The **enriched** <sup>82</sup>**Se** production (Urenco) is starting and the delivery of the 10 kg is foreseen for end of 2013

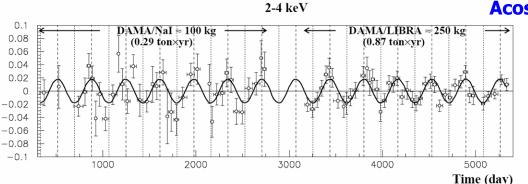

Expected background in the ROI (2995 keV) dominated by environmental  $^{214}$ Bi is expected to be  $\leq 0.006$  counts/(keV kg y)

Lucifer will be hosted in the CUORICINO cryostat, once the CUORE-0 tower will finish data taking (2014-2015)

## **Dark matter @ LNGS**

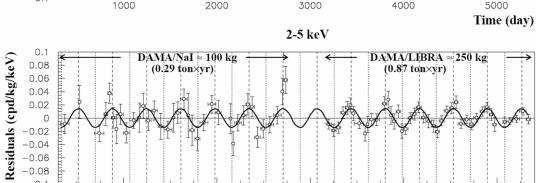


Different methods and techniques towards a "smoking gun" signature

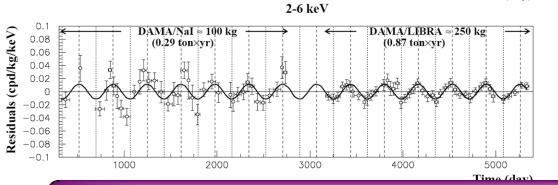



### **Model Independent Annual Modulation Result**

DAMA/NaI (7 years) + DAMA/LIBRA (6 years) Total exposure: 425428 kg·day = 1.17 ton 'yr


experimental single-hit residuals rate vs time and energy

EPJC67(2010)39; see also refs therein




Residuals (cpd/kg/keV)

1000



2000



3000

4000

Acos[w(t-t<sub>0</sub>)]; continuous lines:  $t_0 = 152.5 d$ , T = 1.00 y

#### 2-4 keV

A= $(0.0183\pm0.0022)$  cpd/kg/keV  $\chi^2/dof = 75.7/79$  **8.3**  $\sigma$  **C.L.** 

Absence of modulation? No  $\chi^2/dof=147/80 \rightarrow P(A=0)=7\cdot 10^{-6}$ 

#### 2-5 keV

A= $(0.0144\pm0.0016)$  cpd/kg/keV  $\chi^2/dof = 56.6/79$  **9.0**  $\sigma$  **C.L.** 

Absence of modulation? No  $\chi^2/dof=135/80 \rightarrow P(A=0)=1.1\cdot 10^{-4}$ 

#### 2-6 keV

A=(0.0114±0.0013) cpd/kg/keV  $\chi^2/dof = 64.7/79$  **8.8**  $\sigma$  **C.L.** Absence of modulation? No  $\chi^2/dof = 140/80 \rightarrow P(A=0) = 4.3 \cdot 10^{-5}$ 

The data favor the presence of a modulated behavior with proper features at 8.8 c.L

5000 Time (day)

# Summarizing

The new annual cycles DAMA/LIBRA-5,6 have further **confirmed a peculiar annual modulation** of the **single-hit events** in the (2-6) keV energy region which satisfies the many requests of the DM annual modulation signature.

The total exposure by former DAMA/NaI and present DAMA/LIBRA is **1.17 ton yr** (13 annual cycles)

In fact, as required by the DM annual modulation signature:

1)

The *single-hit* events show a clear cosine-like modulation

2)

Measured period is equal to  $(0.999\pm0.002)$  yr, well compatible with the 1 yr period,

3) Measured phase (146±7) days is well compatible with the roughly about 152.5 days

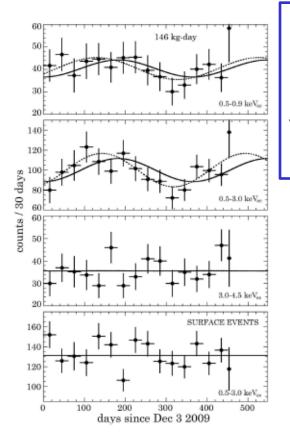
4)

The modulation is present only in the low energy (2—6) keV energy interval and not in other higher energy regions

**5)** 

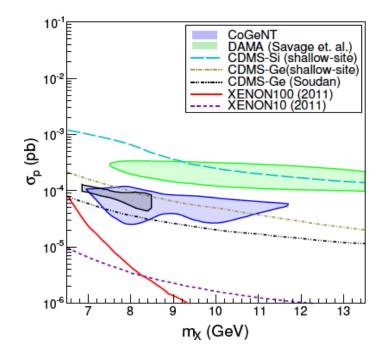
The modulation is present only in the *single-hit* events, while it is absent in the *multiple-hit* ones

6)


The measured modulation amplitude in NaI(TI) of the single-hit events in the (2-6) keV energy interval is:  $(0.0116\pm0.0013)$  cpd/kg/keV (8.9 $\sigma$  C.L.).

**No systematic** or side process able to simultaneously satisfy all the many peculiarities of the signature and to account for the whole measured modulation amplitude is available

## **Dark Matter**




Very recently great excitement in DM field produced by the CoGeNT (SUL) results of 15 months of data showing indication at  $2.8\sigma$  of annual modulation in a P-type Ge-detector



DAMA and CoGeNT results consistent with a DM particle with mass  $m_X$  in the range  $\approx 10$  GeV and elastic  $s \approx 10^{-40}$  cm<sup>2</sup>. Phase, period and amplitude are also consistent.

This simple interpretation is excluded by other null results mostly by Xenon100 (LNGS) and CDMS (SUL)



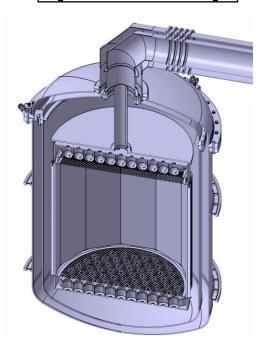
# The XENON Dark Matter **Program**



past (LNGS) (2005 - 2007)



Achieved (2007) σ s<sub>I</sub>=8.8 x10<sup>-44</sup> cm<sup>2</sup>


current (LNGS) (2008-2011)



XENON10

XENON100 Achieved (2010)  $\sigma_{SI}$ =2.4 x10<sup>-44</sup> cm<sup>2</sup> Achieved (2011)  $\sigma_{SI} \sim 7 \times 10^{-45} \text{ cm}^2$ 

future (2011-2015)



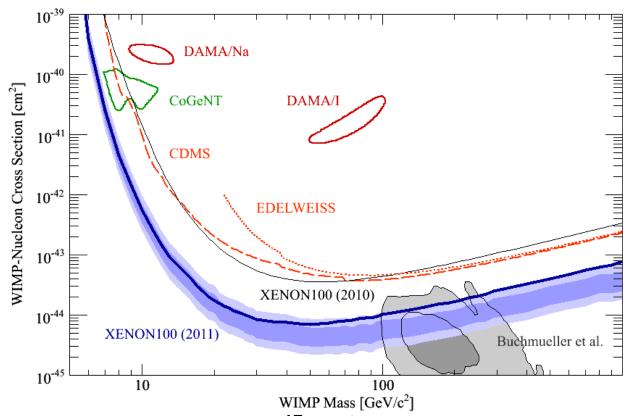
**XENON1T** 

*Projected (2015)*  $\sigma_{SI} \sim 10^{-47} \text{ cm}^2$ 



Approved by INFN and by the LNGS Scientific Committee

## **XENON100 Dark Matter**




900 events observed in 4800 kg day: 3 in the WIMP window

Expected total Gamma Leakage:  $1.8 \pm 0.6$ 

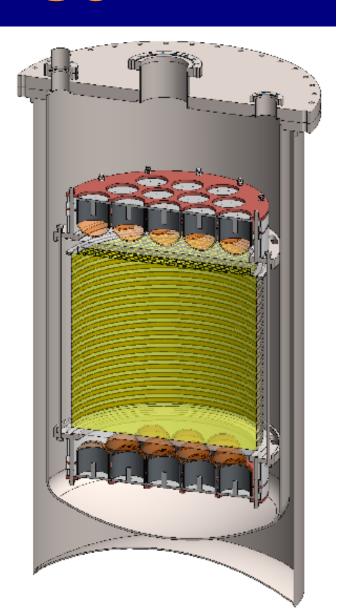
Expected Neutron Background: 0.1 + 0.08 - 0.04

Expectation validated on unblinded side band (30 - 130 phe)





Minimum at  $7 \times 10^{-45} \text{ cm}^2$  and 50 GeV


## **WARP 100 detector**

- ➤ WARP 140-kg detector **installed** at LNGS. Liquid argon filling completed, **technical run** ongoing
  - > complete neutron shield
- ➤ 4π active neutron veto (9 tons Liquid Argon, 300 PMTs), allowing active control on nuclear-recoil background
- ➤ 3D event localization and definition of fiducial volume for surface background rejection
  - ➤ Detector designed for **positive**confirmation of a possible WIMP
    discovery (annual modulation, neutron background subtraction)
    - Cryostat designed to allocate a possible 1400 kg detector



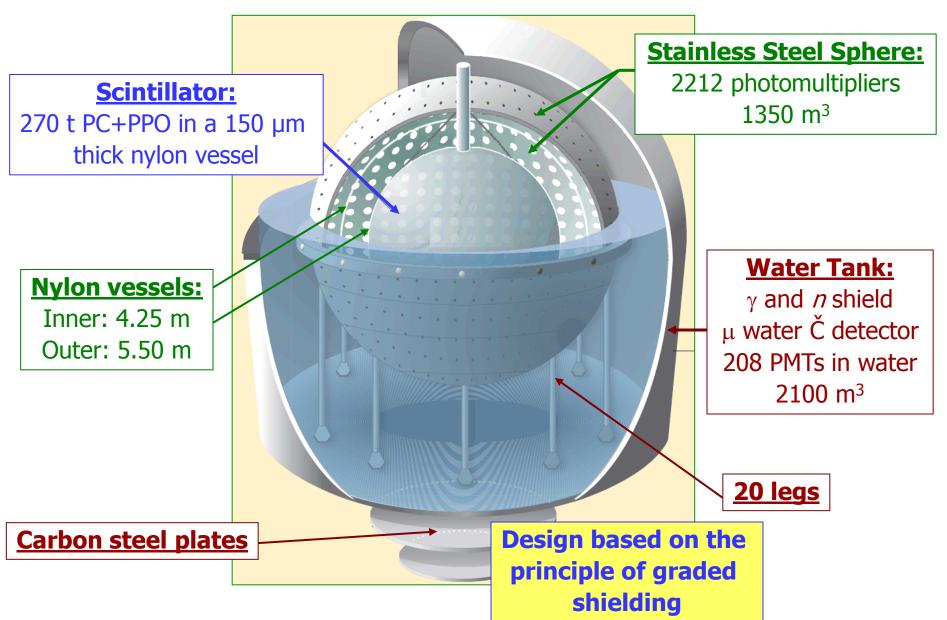
## Dark Side - 50

- first implementation of new technologies
  - depleted argon, QUPIDs, organic scintillator based neutron veto
- dual-phase TPC à la WARP
- > 50 kg depAr active mass
- sensitivity 10<sup>-45</sup> cm<sup>2</sup> in 3-yrs background-free operation
- demonstrate potential of the technology for multiton year background-free sensitivity



## Dark matter – Future perspectives




- Rich experimental program for dark matter searches at LNGS in the next years
  - many complementary techniques and target materials available
- DAMA/LIBRA
  - continue observations on annual modulation
  - improved set-up (lower energy threshold)
- > XENON 1T
  - recently approved by INFN and LNGS Scientific Committee
  - location: Hall B
- Liquid Argon Technology
  - pursue with both WARP100 and Dark Side R&D
- > CRESST
  - precursor of the next-generation dark matter project EURECA

# **Neutrino physics**

- Solar neutrinos
  - <sup>7</sup>Be was the main target for Borexino
  - Future: <sup>8</sup>B, CNO, pep and possibly pp
- Geo anti-neutrinos
- SuperNova neutrinos
  - LVD, Borexino and ICARUS
  - LVD and Borexino are in the SNEWS network
- CNGS neutrinos
  - OPERA and ICARUS
- Basic neutrino properties
  - design dedicated experimental activities to probe models predicting sterile neutrinos

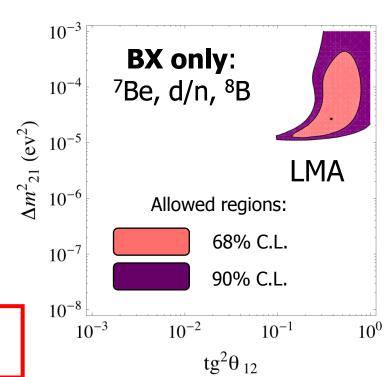
#### **BOREXINO:** a real time detector for solar neutrinos



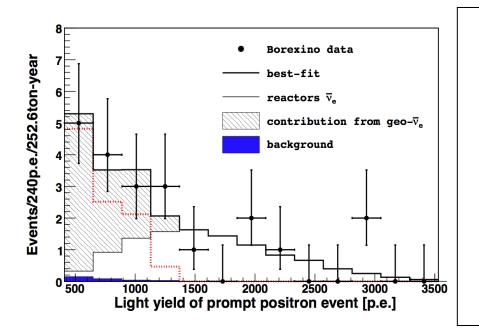


## <sup>7</sup>Be solar neutrino flux measurement

1<sup>st</sup> result (30% - 2007) <sup>7</sup>Be Rate =  $47 \pm 7_{stat} \pm 12_{syst}$  cpd/100t (47.4 days) 2<sup>nd</sup> result (10% - 2008) <sup>7</sup>Be Rate =  $49 \pm 3_{stat} \pm 4_{sys}$ cpd/100 t (192 days)


3<sup>rd</sup> result: at 4.3 % precision

 $46\pm1.5_{STAT}\pm1.3_{SYS}\,$  cpd/100 t in 750 days of data


Measured also day-night asymmetry:  $A_{dn} = 0.001 \pm 0.012$  (stat)  $\pm 0.007$  (syst)

| Hypothesis                  | Exp. Rate<br>(cpd/100t) |
|-----------------------------|-------------------------|
| No oscillation +High Z      | 74±4                    |
| No oscillation + Low Z      | 67±4                    |
| Oscillation MSW + High<br>Z | 48±4                    |
| Oscillation MSW + Low Z     | 44±4                    |

BX measurement **confirms oscillations** but cannot discriminate High vs. Low metallicity



## Geo-v: observation of the geo- v signal



$$N_{geo} = 9.9_{-3.4}^{+4.1}_{-8.2}^{+14.6}$$
 @ 99.73% C.L

$$N_{react} = 10.7_{-3.4}^{+4.3} - \frac{15.8}{-8.0}$$
 @ 68.3% C.L

Null geo- $\nu$  hypothesis **rejected at** 4.2  $\sigma$ 

**Background** in the geo-v energy window:  $0.31 \pm 0.05$ 

$$^{238}$$
U →  $^{206}$ Pb + 8 α + 8  $e$  + 6  $\overline{v}_{e}$  + 51.7 MeV  
 $^{232}$ Th →  $^{208}$ Pb + 6 α + 4  $e$  + 4  $\overline{v}_{e}$  + 42.8 MeV  
 $^{40}$ K →  $^{40}$ Ca +  $e$  + 1  $\overline{v}_{e}$  + 1.32 MeV

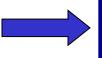
S/B  $\approx$  4:1 in Borexino S/B  $\approx$  1:7 in Kamland

Relevance of geoneutrinos study  $\rightarrow$  A new probe of the Earth interior: the movement of the heat within the Earth is central in the theory of plate tectonics



### CNGS beam: CERN Neutrino to Gran Sasso

#### **Energy**:

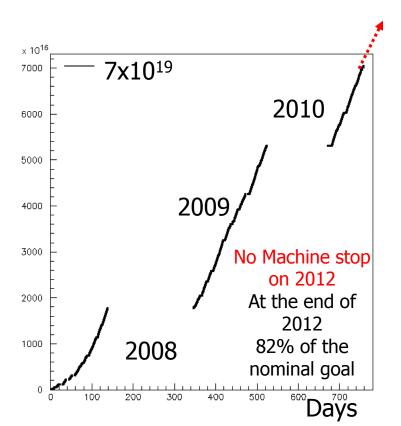

optimized for  $v_{\tau}$  appearance mode <u>Goal</u>:

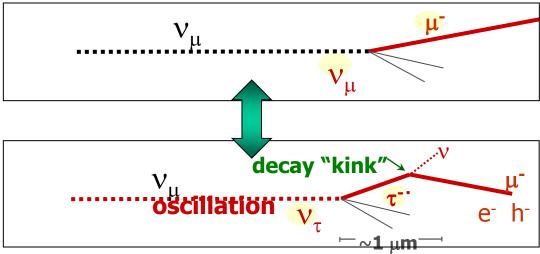
prove definitely the neutrino oscillations

Project INFN-CERN: approved in 1999, started in 2006

 $\nu_{\mu}$  beam produced at CERN and detected at LNGS

Experimental halls designed in the CERN direction





**OPERA** running since 2006 **ICARUS** running since 2010

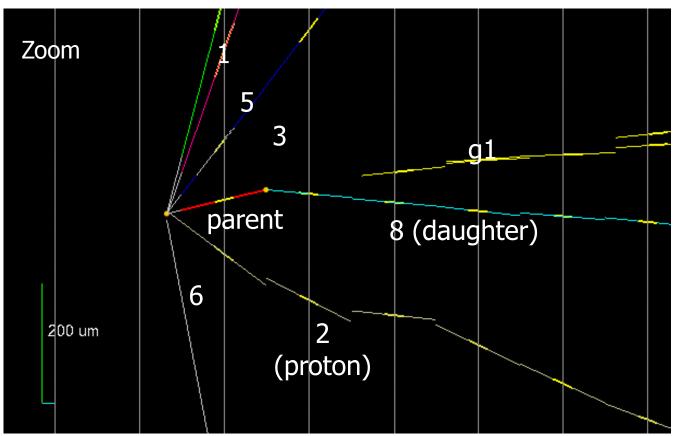
## OPERA: Oscillation Project with EmulsiontRacking Apparatus

# The direct detection of neutrino oscillations in appearance mode

Requires: (1) long baseline, (2) high neutrino energy, (3) high beam intensity, (4) **detect** short lived  $\tau$ 's

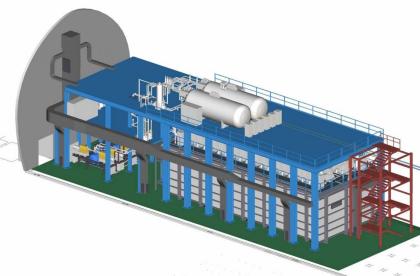





|                                      | Signal $\Delta m^2 = 2.5 \times 10^{-3} \text{ eV}^2$ | Background |
|--------------------------------------|-------------------------------------------------------|------------|
| Counts for 22.5x10 <sup>19</sup> pot | 10.4                                                  | 0.75       |

## **Neutrino Oscillations: OPERA**




> Recently at LNGS

the first evidence of direct detection of  $v_{\mu} \rightarrow v_{\tau}$  oscillation in appearance mode



## **ICARUS T600 in LNGS Hall B**

Two identical modules  $3.6 \times 3.9 \times 19.6 \approx 275 \text{ m}^3 \text{ each}$  Liquid Ar active mass:  $\approx 476 \text{ t}$ 



#### **Multi-purpose detector:**

atmospheric, solar (>8 Mev), supernovae neutrinos, nucleon decay searches in "exotic" channels, CNGS beam

Milestone towards a multi-kton LAr detector with unique imaging capability, and spatial/calorimetric resolutions

CNGS neutrino event (May 28th 2010)

Inaugurated on March 29<sup>th</sup>, 2011. Preliminary results available on  $v_{\mu}$  interactions from the CNGS beam



# Laboratory for Underground Nuclear Astrophysics



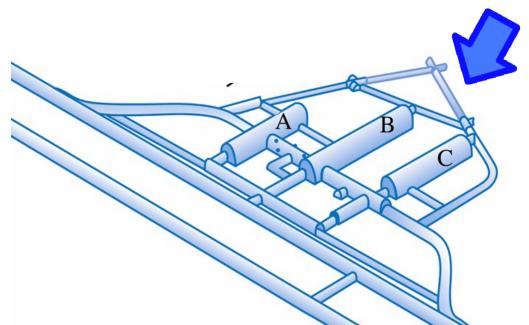
400 kV Accelerator:

 $E_{beam}$ : 50 – 400 keV

 $I_{max} \approx 500 \ \mu A$  protons

 $I_{max}\approx 250~\mu\text{A} \quad \text{alphas}$ 

3 reactions still to be studied: probably 3-4 years from now


| reaction                                        | Gamow energy<br>(keV) | Lowest meas. Energy (keV) | LUNA limit |
|-------------------------------------------------|-----------------------|---------------------------|------------|
| <sup>15</sup> N(p,γ) <sup>16</sup> O            | 10-300                | 130                       | 50         |
| <sup>17</sup> O(p,γ) <sup>18</sup> F            | 35-260                | 300                       | 65         |
| <sup>18</sup> O(p,γ) <sup>19</sup> F            | 50-200                | 143                       | 89         |
| $^{23}$ Na(p, $\gamma$ ) $^{24}$ Mg             | 100-200               | 240                       | 138        |
| <sup>22</sup> Ne(p, $\gamma$ ) <sup>23</sup> Na | 50-300                | 250                       | 68         |
| $D(\alpha,\gamma)^6Li$                          | 50-300                | 700(direct)               | 50         |
|                                                 |                       | 50(indirect)              |            |

# LUNA MV LoI: key reactions of the He burning and neutron sources for the s-process

<sup>12</sup>C( $\alpha,\gamma$ )<sup>16</sup>O, <sup>13</sup>C( $\alpha,n$ )<sup>16</sup>O, <sup>22</sup>Ne( $\alpha,n$ )<sup>25</sup>Mg, ( $\alpha,\gamma$ ) reactions on <sup>14,15</sup>N and <sup>18</sup>O → reactions relevant at higher temperatures than reactions belonging to the hydrogen-burning studied so far at LUNA



higher energy machine required: 3 MV



Location underground has been identified:

#### interferometric area

An *ad hoc* committee was appointed to evaluate impact of accelerator **n production** to other experiments → **no major impact** in the foreseen position

# **LUNA MV Project: Status**

- Positive recommendation by the LNGS Scientific Committee following the report from the ad-hoc neutron committee
- > Real **feasibility study** started
  - finalize the design of the accelerator (LUNA Collaboration + INFN-LNF)
  - finalize the design of the neutron shielding
  - prepare the refurbishment of the underground area (ventilation, floor sealing, security system)
    - estimated time: 1 year, cost: 400 k€
- ➤ A **Round Table** was organized at LNGS (Feb 10<sup>th</sup>-11<sup>th</sup>) to collect interest among new groups
  - <u>slides</u> and <u>proceedings</u> available at http://luna.lngs.infn.it/luna-mv

# Conclusions

- INFN-Gran Sasso laboratory is the largest underground laboratory in the world
  - Leadership in massive experiments with record performance and low-level background
- ➤ The present scientific program of LNGS includes a very broad spectrum of competitive experiments (astroparticle, particle and nuclear physics)
  - **16 experiments** + R&D activities, including world-leading in the fields of solar neutrinos, accelerator neutrinos, double beta decay, dark matter and nuclear astrophysics
- Plan to maintain the scientific excellence in the next years by an extensive physics program (new experiments and upgrades of the present ones)
- ➤ After the end of the CNGS program (2013-2015), underground space (OPERA and ICARUS) could be made available
  - laboratory still open to proposals for new and innovative experiments

# **BACKUP**

## Physics at LNGS

The inventory of Universe and the dark matter

DAMA/LIBRA
CRESST
WARP
XENON
Dark Side R&D

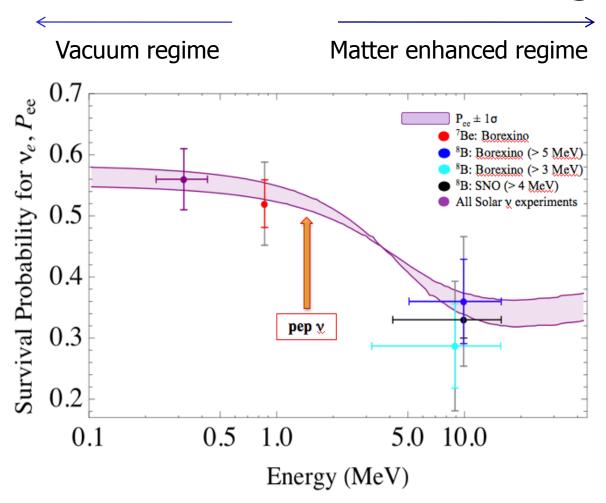
LBL - CNGS

OPERA Icarus T600

Properties of neutrinos and their role in cosmic evolution

2β0ν CUORE GERDA COBRA Lucifer R&D

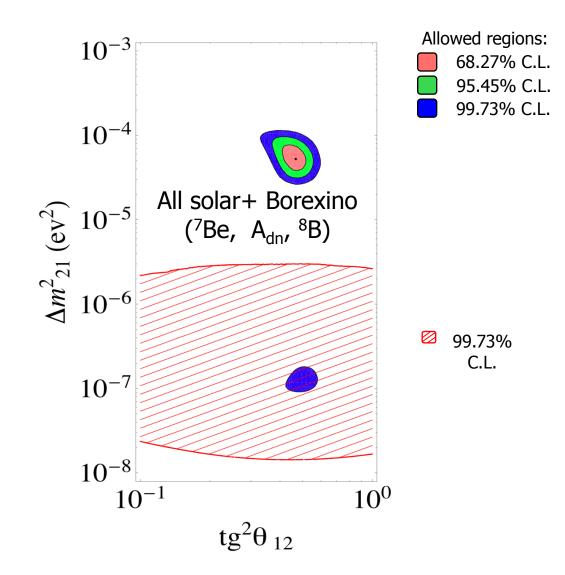
What about the interior of the Sun and the Earth


BOREXINO LUNA

LVD

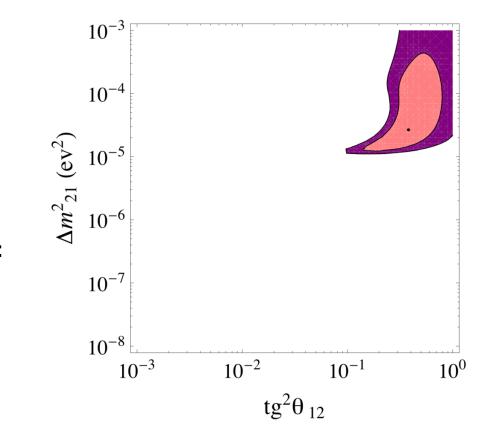
What about the supernova explosions

# **Impact of Borexino results**


<sup>7</sup>Be flux and P<sub>ee</sub>: validation of the LMA MSW model in the vacuum regime



# **Impact of Borexino results**


The LOW region is ruled out at 8.5 σ by solar n only (not anti v) when Borexino data are included

No need for CPT



# **Impact of Borexino results**

The Borexino data (<sup>7</sup>Be, D/N, <sup>8</sup>B rate and spectrum) (without the others solar data and without KamLand) identify the LMA region at 90% CL



Allowed regions: 68% C.L.

90% C.L.