# Deep Underground Labs in Kamioka

Masato Shiozawa ASPERA Workshop, July-1-2011

Kamioka Observatory, Institute for Cosmic Ray Research, U of Tokyo, and Kamioka Satellite, Institute for the Mathematics and Physics of the Universe, U of Tokyo

# Location of Kamioka Observatory



- 1000m overburden in Mt. Ikenoyama
- drive in, 24 hours, 365days
- 10 min. drive from the office buildings

#### Location

- Northern part of Gifu pref.
- one hour flight from Tokyo + 40 min. drive from Toyama airport



# Office building and dormitory (Kamioka Observatory)





- ♦ Office Building
  - ✦ Computer facility
    - ✦ ~1,000 linux CPUs
    - ♦ 750 TeraByte Hard Disk
    - ♦ 500 TeraByte Tape Library
  - ✦ Library
  - Seminar room
  - ✦ TV conf. meeting room
  - Electronics room
  - Chemicals room
  - SK remote control room
  - $\blacklozenge$  ~25 Office rooms
- Dormitory
  - ~20 guest rooms
  - Cafeteria



## **Relevant Numbers**

- Scientific Staff.: 19
  - ► 2 Professor
  - ▶ 5 Associate prof.
  - ▶ 12 Assistant prof.
  - ► (3 PostDoc)
- Supporting Staff.
  - ▶ 3 technical staff
  - ▶ 4 business office



- BG level
  - Neutron flux
    - Thermal neutron
    - Non-thermal neutron  $(1.15\pm0.12)\times10^{-5}/cm^{2}/s$
  - ▶ Rn 10~1000 Bq/m<sup>3</sup>
- ► Low BG Devices
  - ► Ge detector ×3
  - ► ICP MS
  - API MS
  - Rn detectors
  - Rn-free air (1mBq)
  - Pure water supply
    - ▶ ~18M Ohm
    - For Super-K: 40ton/hour
    - For XMASS and others: 15tons/hour



 $(8.26\pm0.58)\times10^{-6}/\text{cm}^{2}/\text{s}$ 





### Review of each experiments



#### Future

- sub-dominant effect ( $\theta_{13}$ , hierarchy,  $\delta_{CP}$ ) in atmospheric v
- Upturn of low energy solar ν
- Past and realtime Supernova  $v \rightarrow$  Gadolinium doping
- Proton Decay  $(2 \sim 3 \times 10^{34} \text{ yrs for } p \rightarrow e^+ + \pi^0)$
- **T**2K to establish nonzero  $\theta_{13}$  and precise measurement of ( $\Delta m_{23}^2, \theta_{23}$ )

# Sub-dominant oscillation effects in atmospheric $\nu$





# Gd doping in SK (Gadzooks!)



EGADS construction going on

- feasibility test in 2012
- put Gd into SK in 2013?

## T2K (JPARC v+Super-K)

#### Observed indication of $\nu_{\mu} \rightarrow \nu_{e}$



Super-Kamiokando (ICRR, Univ. Tokyo) RC Main Ring

#### Next step

• establish  $V_e$  appearance and measurement of  $\theta_{13}$ • precise measurement of  $(\Delta m^2_{23}, \theta_{23})$ 

#### (Hesheng Chen's talk) (Kishimoto's talk)

# XMASS

- Phase-I, 850kg(FV100kg) Liq. Xe Detector
  - ♦ WIMP DM search
  - ♦ 642 low BG PMTs
  - ✦ ~20cm selfshield
  - $\blacklozenge$  water shield
  - ♦ 5keV threshold
  - Commissioning
- ✦ Scalability
  - ✦ 20ton is acceptable by the water tank
  - ♦ FV100kg  $\rightarrow$ 1ton  $\rightarrow$ 10ton
  - DM as well as  $0\nu 2\beta$  and solar pp  $\nu$





#### XMASS expected sensitivity



phase-I:  $10^{-45}$ cm<sup>2</sup>(@50GeV)  $\rightarrow$  phase-II:  $10^{-47}$ cm<sup>2</sup>(@50GeV) If DM is observed in the phase-I, phase-II aims to observe seasonal variation and spectrum



#### **KamLAND-Zen** $0v2\beta$ (Kishimoto's talk)



#### Expected sensitivity of KamLAND-Zen



electronics

KamLAND-Zen plans to start in August

#### (Kishimoto's talk) CANDLES (Osaka Univ.)

#### Phase-III commissioning started



- ♦ 0ν2β search w/ CaF<sub>2</sub> crystal
   ♦ <sup>48</sup>Ca, Q=4.27MeV
- $\blacklozenge$  low BG

♦ water and LS shields
♦ pulse shape discrimination
♦ phase-III (305kg) running
♦ mββ~0.5eV
♦ IV (3.4t→3.3kg<sup>48</sup>Ca), →V(10t 1%)
⇒ 20t 5%), goal mag. 10mV(

→ 30t 5%), goal m<sub>ββ</sub>~10mV



<sup>48</sup>Ca: 0.2% natural abundance could be enriched by crown ether



# GW experiments CLIO (prototype) and LCGT

#### CLIO (ICRR, Kamioka) 100m

2003-2006 Construction2008 Best sensitivity at room temperature2010 Cryogenic mirrors

Low frequency sensitivity Demonstration of Cryogenic system



The world's first demonstration of cryogenic system for interferometer

#### Target GW sources of LCGT

- Coalescence of neutron start binaries
- Coalescence of black hole binaries
- Core collapse of massive stars
- else



# LCGT (Gravitational Wave Detection, ICRR)



# Hyper-Kamiokande candidate site

- $\bullet$  8km south from Super-K
  - ✦ same T2K beam off-axis angle
- $\blacklozenge$  2.6km horizontal drive from entrance
- $\blacklozenge$  under the peak of Nijuugo-yama
  - ♦ 648m of rock or 1,750 m.w.e. overburden
  - $\blacklozenge$  508m above sea level
- ✦ dominated by Hornblende Biotite Gneiss and Migmatite
- $\bullet$  2.3km from waste rock disposal place
- $\Rightarrow$  13,000 m<sup>3</sup>/day or 1 megaton/80 days natural water







### Hyper-Kamiokande R&D



- Geological survey of the site is going on
- Qualitative studies on physics potential



## Summary

- Scientific activity in Kamioka is rapidly growing
  - Nucleon Decay and  $\nu$  oscillation exp. in progress
  - multiple DM detection experiments are starting
  - multiple  $\beta\beta$  experiments are starting
  - ► Gravitational Wave Antenna will start in ~5 years
- We expect physics outputs in a few years
- Many extensions are under discussion, R&D is going on