FCC – towards more luminosity 7th FCC Physics Workshop Annecy, 29 January 2024

Frank Zimmermann, CERN

many thanks to Patrick Janot and Christophe Grojean for inviting this presentation

Alert: this talk was not endorsed by FCC or CERN management !

Work supported by the **European Commission** under the **HORIZON 2020 project**, **FCCIS**, grant agreement 951754

FCC-ee – 2nd highest luminosity collider

luminosity [cm⁻²s⁻¹] / IP

FUTURE

CIRCULAR COLLIDER Innovation Study

~ same accelerator design as twin machine CEPC

a few differences

	FCC-ee	CEPC
#IPs	4 or 2	2
collider SRF up to ZH	400 MHz, 1- & 2-cell, Nb/Cu, 4.5 K	650 MHz, 2-cell, Nb, 2 K
collider SRF ttbar	800 MHz 5-cell, Nb, 2 K	650 MHz, 5-cell, Nb, 2 K
booster SRF	800 MHz 5-cell, Nb, 2 K	1.3 GHz, 9-cell, Nb, 2 K
top-up	in collider	in booster

trends from mid-term review

- reduce linac rep rate from 400 to 200 Hz
- stainless steel chamber for booster
- replace 1-cell Z cavities by 2-cell cavities (the same cavities as for W and ZH)

all this is bad news for luminosity ... (**)

K. Oide Mid-term parameters 11200 bunches / beam injection at 2x200 Hz = 400 Hztime to fill the booster = 11200/400 s = 28 s $up + top + down ramp \sim 1s$ A. Vanel total cycle time 30 s we can inject the same beam every 60 s or 1 minute

beam lifetime: 15 minutes

intensity change at 200 Hz injection (400 Hz rep rate)

 $\Delta N/N \sim e^{-1/15} \sim 0.936 \ (> 6\%)$

if we injected at 100 Hz, we would have

 $\Delta N/N \sim e^{-2/15} \sim 0.875 \ (> 12\%)$

at 100 Hz with rad. Bhabha lifetime (22 min) only: $\Delta N/N \sim e^{-2/22} \sim 0.91 ~(\sim 9\%)$

D. Shatilov required, for the "bootstrapping" injection, to keep the intensity within +/-5% and this without any errors

 \rightarrow how can we lower the linac rep rate below 400 Hz, while keeping the baseline rate of injection ?

- reduce linac rep rate from 400 to 200 Hz
 - new layout without common linac
 - > operation with 4 bunches / pulse
- stainless steel chamber for booster
 - > larger aperture
 - Cu lamination
 - > more cycles with fewer bunches / cycle
- replace 1-cell Z cavities by 2-cell cavities (the same cavities as for W and ZH)
 - efficient HOM damping for 2-cell cavities
 - > one fundamental power coupler per cell ?
- new optics (Raimondi) with larger momentum acceptance?

injector layout baseline

X + Y + (1025 or 762.5) m, overall length < ~1 km 85 m 235 m Υm 705 m – 442.5 m Χm Electron Linac 2.8 GHz High-energy Linac 2.8 - 5.6 GHz 200 Hz, # RF structures and module Common Linac 2.8 GHz, 25 MV/m 200 Hz, # RF structures and module? 2 x 200 Hz, 158 RF structures and 79 module Electron source Ì 2.8 GHz, 200 H to positron source 20 GeV - 4.4 nC from positron BC $\sigma_{z} \sim 1 \text{ mm}$ 0.2 GeV - 5.0 nC 1.54 GeV - 4.8 nC 6 GeV - 4.6 nC $\sigma_{\delta} \sim 0.75 - 1 \%^*$ $\sigma_{z} = 1 \text{ mm}$ $\sigma_{z} = 1 \text{ mm}$ $\sigma_7 = 1 \text{ mm}$ $\epsilon_{N,proj.} < 8 \mu m$ $\sigma_{\delta} = 0.20 \%$ $\sigma_{\delta} = 0.65 \%^*$ $\sigma_{\delta} = 0.72 \%^*$ ε_{N.proj.} < 5.1 μm ε_{N,proj.} < 5.1 μm $\epsilon_{N,proj.}$ < 6.4 µm E = 1.54 GeV Q = 13.5 nC (considering 50% losses for collimation and injection into DR) 125 m to common linac Bunch compressor (BC) Positron linac 2 GHz and dechirping 6 GeV electron 200 Hz, # RF structures and module? from common linac niection section ~10 m Energy collimator Positron Positron/Electron **Triple Bend Achromat** and compressor Separation at 200 MeV Source E = 6 GeV Cell for Arcs Q = 1.9-2.1 nC 1.54 GeV - 4.8 nC $\sigma_z = \dots mm$ C = 242 – 271 m $\sigma_{\delta} = \dots \%$ $\epsilon_{N,proj.} < 5.1 \, \mu m$ E = 1.54 GeV Damping ring Qb = 5.4 nC

Return transfer line

FODO and matching section

~400 m

common linac 1.54 GeV \rightarrow 6 GeV; 400 Hz rep rate,

Transfer line to BR and energy compressor

20 GeV $\sigma_{z} \sim 1 - 5 \text{ mm}^{**}$ $\sigma_{\delta} \sim 0.05 - 0.15 \%^{**}$

ε_{N,proj.} < 10 μm

E = 1.54 GeV

Q = ? nC

106 m

53 ∃

Extraction section

total S-band linac length 1150 m

DR energy 1.54 GeV

e⁺ production at 6 GeV

P. Craievich et al.

CERN

FCC FS Status Frank Zimmermann FCC Physics Workshop, 29 January 2024

65

Triple Bend Achromat

Cell for Arcs

Energy Chirp for Bunch

compressor

1 a

FUTURE

CIRCUI AR COLLIDER Innovation Study

alternative injector layout

total S-band linac length 1095 m,

DR energy 2.86 GeV,

FUTURE

Innovation Study

_IDER

e⁺ production at 2.86 GeV

luminosity constraints

injector rate limitation for Z running - factor <2 margin

SR power limit – luminosity could be increased in proportion to SR power

beamstrahlung limit

beam-beam tune shift limit

$$\frac{1}{\rho} \propto \frac{\xi_y}{L_i} \sqrt{\frac{\varepsilon_y}{\beta_y^*}}$$

$$\xi_y = \frac{N_b r_e}{2\pi\gamma} \frac{\beta_y^*}{\sigma_x \sigma_y \sqrt{1 + \Phi^2}}$$

<u>note:</u> if we keep $\varepsilon_y / \beta_y^*$ constant, ρ and ξ_y are unchanged

constraint from coherent beam-beam instability

 $\xi_x < Q_s$

change emittances? reduce beta *?

Mid-term Review Parameters	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch spacing [ns]	25			
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
SR power [MW]	100	100	100	100
total RF voltage 400/800 MHz [GV]	0.080/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
horizontal rms IP spot size [µm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / <mark>5.4</mark>	3.4 / 4.7	1.8 / 2.2
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	141	20	5.0	1.25
total integrated luminosity / IP / year [ab ⁻¹ /yr]	17	2.4	0.6	0.15
beam lifetime rad Bhabha [min]	22	16	14	12
beam lifetime (q+BS+lattice) [min]	50	42	100	100

Parameters for 150 MW SR power	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1905	206	40	7.4
number bunches/beam	16800	2670	660	90
bunch spacing [ns]	<18			
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
SR power [MW]	150	150	150	150
total RF voltage 400/800 MHz [GV]	0.080/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.7	1.0	1.0	1.6
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.9	2.2	1.4	1.6
horizontal rms IP spot size [µm]	9	21	13	40
vertical rms IP spot size [nm]	36	47	40	51
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / 5.4	3.4 / 4.7	1.8 / 2.2
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	212	30	7.5	1.88
total integrated luminosity / IP / year [ab ⁻¹ /yr]	25	3.6	0.9	0.23
beam lifetime rad Bhabha [min]	22	16	14	12
beam lifetime (q+BS+lattice) [min]	50	42	100	100

Parameters for smaller β_y^* & ϵ_y	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1270	137	26.7	4.9
number bunches/beam	11200	1780	440	60
bunch spacing [ns]	25			
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
SR power [MW]	100	100	100	100
total RF voltage 400/800 MHz [GV]	0.080/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.35	0.5	0.5	0.8
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.0	1.1	0.7	0.8
horizontal rms IP spot size [µm]	9	21	13	40
vertical rms IP spot size [nm]	18	24	20	26
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / 5.4	3.4 / 4.7	1.8 / 2.2
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	282	40	10.0	2.5
total integrated luminosity / IP / year [ab ⁻¹ /yr]	34	4.8	1.2	0.3
beam lifetime rad Bhabha [min]	11	8	7	6
beam lifetime (q+BS+lattice) [min]	50	42	100	100

Parameters for 150 MW SRP and smaller β_y^* & ϵ_y	Z	WW	H (ZH)	ttbar
beam energy [GeV]	45.6	80	120	182.5
beam current [mA]	1905	206	40	7.4
number bunches/beam	16800	2670	660	90
bunch spacing [ns]	<18			
bunch intensity [10 ¹¹]	2.14	1.45	1.15	1.55
SR energy loss / turn [GeV]	0.0394	0.374	1.89	10.4
SR power [MW]	150	150	150	150
total RF voltage 400/800 MHz [GV]	0.080/0	1.0/0	2.1/0	2.1/9.4
long. damping time [turns]	1158	215	64	18
horizontal beta* [m]	0.11	0.2	0.24	1.0
vertical beta* [mm]	0.35	0.5	0.5	0.8
horizontal geometric emittance [nm]	0.71	2.17	0.71	1.59
vertical geom. emittance [pm]	1.0	1.1	0.7	0.8
horizontal rms IP spot size [μm]	9	21	13	40
vertical rms IP spot size [nm]	18	24	20	26
beam-beam parameter ξ_x / ξ_y	0.002/0.0973	0.013/0.128	0.010/0.088	0.073/0.134
rms bunch length with SR / BS [mm]	5.6 / 15.5	3.5 / 5.4	3.4 / 4.7	1.8 / 2.2
Iuminosity per IP [10 ³⁴ cm ⁻² s ⁻¹]	423	60	15.0	3.8
total integrated luminosity / IP / year [ab ⁻¹ /yr]	51	7.2	1.8	0.45
beam lifetime rad Bhabha [min]	11	8	7	6
beam lifetime (q+BS+lattice) [min]	50	42	100	100

"HL-FCC-ee" – highest luminosity collider !

FUTURE

CIRCULAR COLLIDER Innovation Study

- the alternative injector layout looks attractive and could support higher luminosity at reduced linac repetition rate
- possible path to increasing the FCC-ee luminosity by a factor 2-3 at all energies, by decreasing β_y^* along with ϵ_y , and/or by raising SR power, respecting all other relevant constraints
- a good optics and excellent optics control will be essential
- increasing luminosity at Z is most challenging; vertical design emittance from IR solenoids should be minimised (presently ~0.5 pm for 4 IPs at Z, Mike Koratzinos, arXiv 2101.05704); at Z also e-cloud could limit #bunches
- there might be other ways to boost the FCC-ee luminosity (hor. emittance, crossing angle, hor. beta*, bunch length, bunch charge etc.)

