

Detector Concepts Status

Mogens Dam, Marc-André Pleier, Felix Sefkow

7th FCC Physics workshop, LAPP Annecy, January 29, 2024

Current Detector Concepts

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID ($\mathcal{O}(10 \text{ ps})$ timing and/or RICH)?

IDEA

• Prototype designs, test beam campaigns,

- Ihe "new kid on the block"
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

Current Detector Concepts

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker, study TPC option viability
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (**O**(10 ps) timing and/or RICH)?

- Muon system
- Very active community
 - Prototype designs, test beam campaigns,

- The "new kid on the block"
- Si vtx det., ultra light drift chamber (or Si)
- High granularity Noble Liquid ECAL as core
 - Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

Current Detector Concepts

- Well established design
 - ILC -> CLIC detector -> CLD
- Full Si vtx + tracker, study TPC option via
- CALICE-like calorimetry;
- Large coil, muon system
- Engineering still needed for operation with continuous beam (no power pulsing)
 - Cooling of Si-sensors & calorimeters
- Possible detector optimizations
 - σ_p/p, σ_E/E
 - PID (*O*(10 ps) timing and/or RICH)?

IDEA

Instrumented return yoke

(with large uncertainties: +50% -30%)

powerful PID; compact, light coil;

- Monolithic dual readout calorimeter;
 - Possibly augmented by crystal ECAL
- Muon system
- Very active community
 - Prototype designs, test beam campaigns,

he "new kid on the block"

i vtx det., ultra light drift chamber (or Si) ligh granularity Noble Liquid ECAL as core

- Pb/W+LAr (or denser W+LKr)
- CALICE-like or TileCal-like HCAL;
- Coil inside same cryostat as LAr, outside ECAL
- Muon system.
- Very active Noble Liquid R&D team
 - Readout electrodes, feed-throughs, electronics, light cryostat, ...
 - Software & performance studies

FCC-ee CDR: https://link.springer.com/article/10.1140/epjst/e2019-900045-4

Vertex Detector & Tracking

Constraints from machine detector interface

- last focusing quadrupole at ± 2.2m from IP
- angular coverage beyond ±100 mrad
- magnetic field \leq 2T for Z-pole run
- latest details in <u>Detector & MDI session</u> Tue, 9am

Challenges: material budget, power & cooling, detector stability

- Flavor tagging: low mass, small pixel size, close to IP, low power, ...
- Tracking: the lighter the better for momentum resolution, angular resolutions
 ≤ 0.1 mrad needed for control of beam energy spread.

Ongoing studies:

- Vertex Detector and Silicon Wrapper talks in <u>Detector & MDI session</u>, Tue 09:00h
- Si detector and drift chamber talks in Tracking and vertexing session, Tue 17:45h
- Tracker optimization and TPC concept studies in <u>Joint Detectors & Software &</u> <u>Computing session</u>, Wed 11:00h

LumiCal

FCC-ee MDI & IR Mockup Workshop - Fabrizio Palla

Si vertex detector & tracker

Luminosity Measurement

Aim for $\sigma(L) / L$ of 10⁻⁴ from low-angle Bhabha events

- match expected theo precision of Bhabha cross section
- inner radius of the LumiCal must be known to 1.6µm

Challenges:

- operational stability
- copper cooling manifold around beampipe: scattering background levels?

Ongoing studies:

- Full simulation studies ongoing
- See status report in Wed 14:00 plenary

Calorimetry

EMcal to enable photon and pion reconstruction

- 10-15% / \sqrt{E} for photons (~25% of jet E) suffices for jets
- higher em resolution needed for flavor physics and helps jet reco
- e/ γ and e/ π separation study needs full sim/reco

Aim for jet energy resolutions of ~3-4% at 50GeV:

- jet E reco via angles for kinematically constrained final states
- Particle Flow reconstruction (-> high granularity!)
- dual read out to correct for non-compensation

Challenges: operational stability, cost, compactness despite cooling

Ongoing studies:

- <u>Calorimetry session</u>, Tue 11:00h
- <u>ALLEGRO s/w implementation</u>, Wed 11:00h
- Software & Computing: Reconstruction, Thu 11:00h

12:30 Parallel 2: Detectors - Calorimetry 11:00 Towards occupancy and bandwidth requirements for highly granular calorimeters at FCCee Q15 Speaker: Vincent Boudry (LLR, CNRS, Ecole polytechnique, Institut Polytechnique de Paris First results from CalVision O 15 Speaker: Sarah Eno (University of Maryland (US) Q15 Noble Liquid calorimetry Speaker: Juska Pekkanen (CERM) Fine-grain calorimetry - Grainita O 15 Speaker: Stephane Montell (Université Clermont Auvergne (FRI) Fibre-based Dual Readout (015 Speaker: Andrea Pareti (Pavia University and INFN (IT)) 5

Particle Identification

Need excellent PID capabilities over wide momentum range

• e/ γ and e/ π separation, π/K , muon/hadron separation Various approaches under study

- IDEA drift chamber
 - >3 $\sigma \pi$ /K separation up to 100 GeV, except around ~1GeV (analytic estimate)
- Time of flight (ToF)
 - Si wrapper or calorimeter
- RICH detectors, e.g. Array of RICH Cells (ARC):
 - could give 3 σ π /K separation from 2 GeV to ~50 GeV
- Muon ID
 - how many layers needed (CLD: 7, IDEA: 3)?

- Ongoing studies: <u>Calorimetry session</u>, Tue 11:00h <u>Tracking and vertexing session</u>, Tue 17:45h <u>Software & Computing: Reconstruction</u>, Thu 11:00h

Figure by Martin Tat Kaon-pion separation significance in ARC barrel

Trigger and DAQ

Requirements are driven by Z-pole running with physics event rate of ~200kHz Major question: do we need a trigger?

- Can all systems self-trigger independently and get data out with margin, without dead-time?
 - Or do some require external trigger signals?
 - And so do others have to provide trigger input and buffer their data with sufficient (what?) latency?

General conditions

- occupancies and hit data volumes event sizes and bandwidth needs
- do we have the tools to estimate these including machine-induced and physics backgrounds
- non-"textbook" events: radiative Bhabha, gamma-gamma, beam-gas and halo, synchrotron radiation bursts, pick-up
- needs for on-detector hit processing and data reduction beyond zero suppression, and how to control / monitor this
- signal formation and propagation times (latencies)

Ongoing studies:

- Calorimetry session, Tue 11:00h
- Detectors: Electronics, Trigger and DAQ session, Thu 17:45h

arxiv:2111.04168	
Physics process	Rate (kHz)
Z decays	100
$\gamma\gamma \rightarrow \text{hadrons}$	30
Bhabha	50
Beam background	20
Total	~ 200

Summary / Outlook

Availability of full simulation and reconstruction code are crucial to study full detector performance with particle flow, e/π separation...

- A lot of effort ongoing (see software and computing sessions!), but more is needed ->synergies with nascent DRD collaborations?
- In the interim, studying performance at sub-detector level

Need well-understood Trigger and DAQ requirements for detector design

- Starting to (re-)evaluate requirements for each detector concept: impacts subdetector design and their readout
- Understand background rates (for each interaction point)
- Starting with this workshop!

