


R_b at the FCC-ee

(or b-tagging efficiency)

Michele Selvaggi (CERN)

$\rm R_b$ at LEP and SLD

https://arxiv.org/abs/hep-ex/0509008

$\rm R_{\rm b}$ method

Main ingredient: b-tagging hemisphere 1 hemisphere 2

iet score = 0.98

Count:

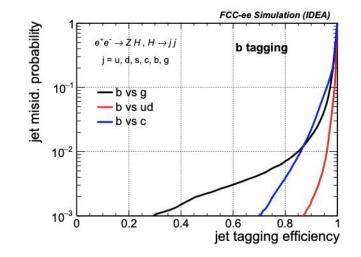
jet score = 0.99

- fraction of b-tagged hemispheres **f**_s
- fraction of events with both hemispheres being b-tagged **f**_D

	LEP	FCC-ee
events	few 10 ⁶	10 ¹²
B [T]	0.5-1.5 T	2 T
σ(d ₀)	100/p ⊕ 25 µm	25/p ⊕ 2 µm
$\varepsilon_{\rm B}$ (tag) (high purity)	30%	85%

and software ...

Assumptions and selection


• 2 years at sqrt(s) = 91.188 GeV

- \circ $\sigma(ee \rightarrow had) = 30050 \text{ pb} (at NLO QCD)$
- N(ee \rightarrow had) = 1.13e12 events
- no backgrounds ($ee \rightarrow \tau \tau$) < 0.1%
- no "had" preselection (E_{vis}, N_{tracks})
 - neglecting bias introduced by preselection

Selection (Efficiency $\sim 60\%$)

- N = 2 Durham k_{T} clustering
- $\cos(\theta_{T}) < 0.7$
- Jet Flavor Tagging

$$\begin{array}{c} \circ & R_{b} = 0.2155 \\ \circ & R_{c} = 0.1720 \\ \circ & R_{q} = 1 - R_{b} - R_{c} \end{array}$$

Double-tag method (ideal case)

$$f_S = \epsilon_b R_b$$

 $f_D = \epsilon_b^2 R_b$ \longrightarrow $R_b = \frac{f_S^2}{f_D}$ and $\epsilon_b = \frac{f_D}{f_S}$

- Measure ratio of single and double tag hemisphere: $_{\odot}$ ~ f_{_{\rm S}}, f_{_{\rm D}}
- Simultaneous extraction of: R_{b} , ε_{b}

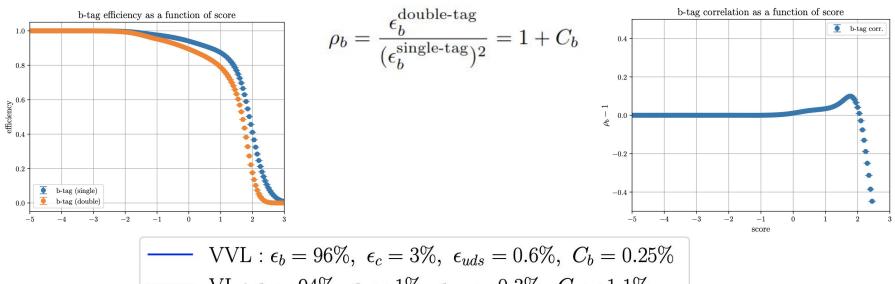
Advantage: Measure directly b-tagging efficiency from data

Expected stat. Precision
at the FCC-ee
$$\sim \left(\frac{\Delta R_b}{R_b}\right)_{\text{stat}} \approx \frac{\sqrt{N(Z \to b\bar{b})}}{\epsilon_b^2} \sim 1\text{e-6}$$

Double-tag method (with hemisphere correlations)

https://arxiv.org/pdf/hep-ex/9810002.pdf

$$f_S = \epsilon_b R_b + \epsilon_c R_c + \epsilon_{uds} (1 - R_b - R_c)$$


$$f_D = (1 + C_b) \epsilon_b^2 R_b + (1 + C_c) \epsilon_c^2 R_c + (1 + C_{uds}) \epsilon_{uds}^2 (1 - R_b - R_c)$$

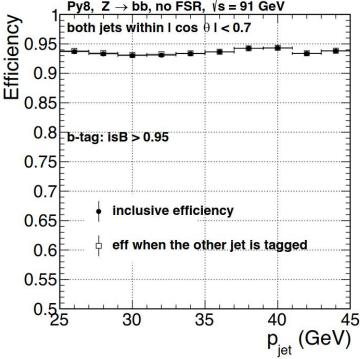
$$f_D \approx (1 + C_b) \epsilon_b^2 R_b$$

Input from MC:

- Mistag rates: $\boldsymbol{\varepsilon}_{c}, \boldsymbol{\varepsilon}_{uds}$, tag correlation coefficients: $\boldsymbol{C}_{b}, \boldsymbol{C}_{c}, \boldsymbol{C}_{uds}$
- theory: R

Hemisphere correlation

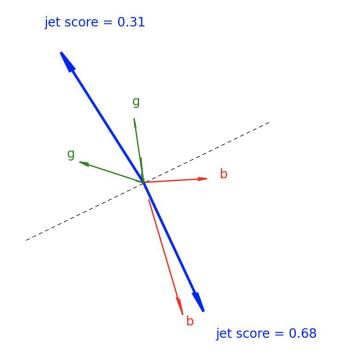
Working points:

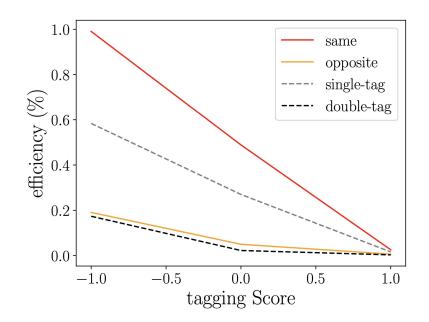

$$\begin{array}{c|c} & \quad \text{VVL}: \epsilon_b = 96\%, \ \epsilon_c = 3\%, \ \epsilon_{uds} = 0.6\%, \ C_b = 0.25\% \\ & \quad \text{VL}: \epsilon_b = 94\%, \ \epsilon_c = 1\%, \ \epsilon_{uds} = 0.3\%, \ C_b = 1.1\% \\ & \quad \text{L}: \epsilon_b = 91\%, \ \epsilon_c = 0.5\%, \ \epsilon_{uds} = 0.2\%, \ C_b = 2.5\% \\ & \quad \text{M}: \epsilon_b = 87\%, \ \epsilon_c = 0.2\%, \ \epsilon_{uds} = 0.08\%, \ C_b = 3.4\% \\ & \quad \text{T}: \epsilon_b = 77\%, \ \epsilon_c = 0.08\%, \ \epsilon_{uds} = 0.03\%, \ C_b = 7.0\% \\ & \quad \text{VT}: \ \epsilon_b = 63\%, \ \epsilon_c = 0.04\%, \ \epsilon_{uds} = 0.02\%, \ C_b = 9.9\% \end{array}$$

• Reminder:
$$\rho = \varepsilon_D / \varepsilon_S^2 - 1$$

- 3 main sources of correlation:
 - QCD radiation (gluon emission):
 - soft gluon radiation (positive)
 - hard gluon radiation (negative)
 - same hemisphere b's
 - ~ 2% events
 - Angular correlation (mainly θ , due to multiple scattering) (positive)
 - contained with central jet selection (tbc)

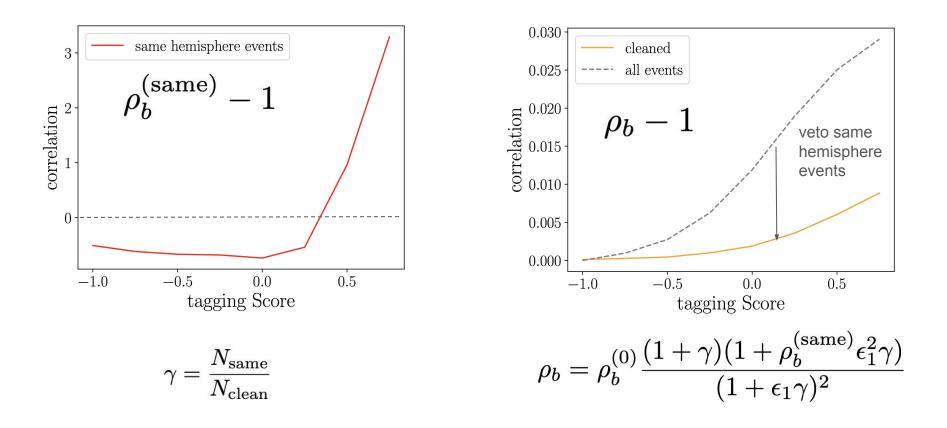
When gluon radiation is switched off in Pythia:


- Flat efficiency vs p
- Tagging one leg does not bias the efficiency of the other leg

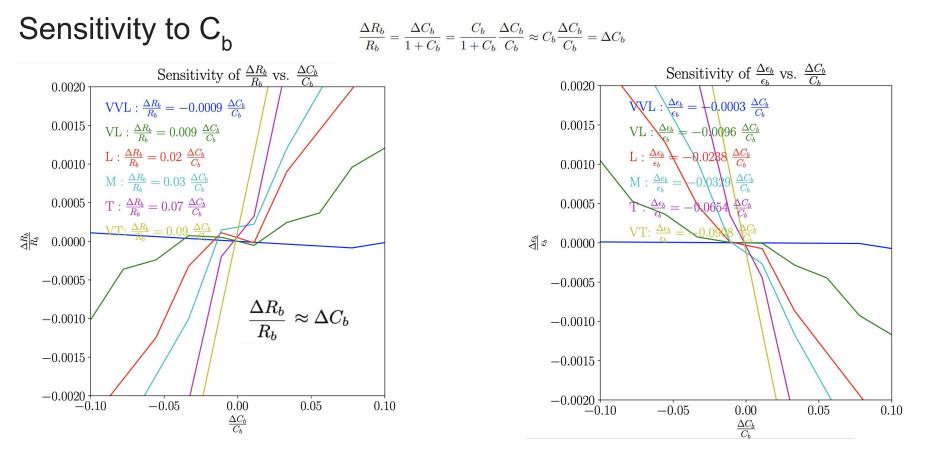

cf. Emmanuel

gluon radiation responsible for correlation

Hard gluon radiation (same hemisphere b')

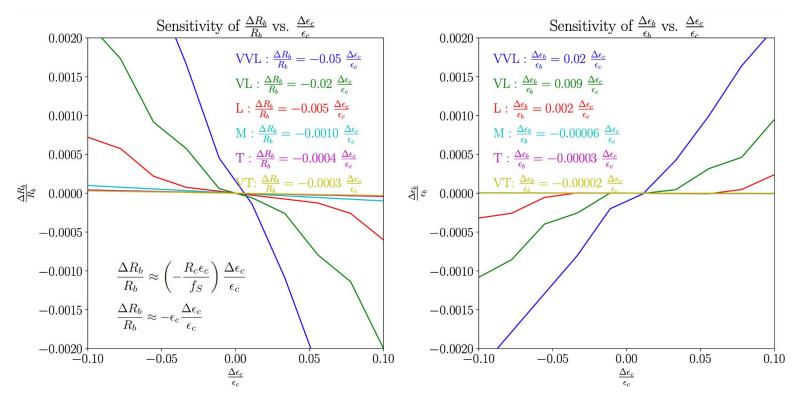


 Introduces negative correlation since tagging hemisphere with 2 b`s decreases probability of tagging other hemisphere



~ 2% of $Z \rightarrow$ bb events

Hard gluon radiation (same hemisphere b')



Sensitivity to systematic undertainties

• Loose tagging WPs are preferred to minimise syst. of C_b to R_b

Sensitivity to charm mistag rate

Tight tagging WPs are preferred to minimise impact of charm mistag

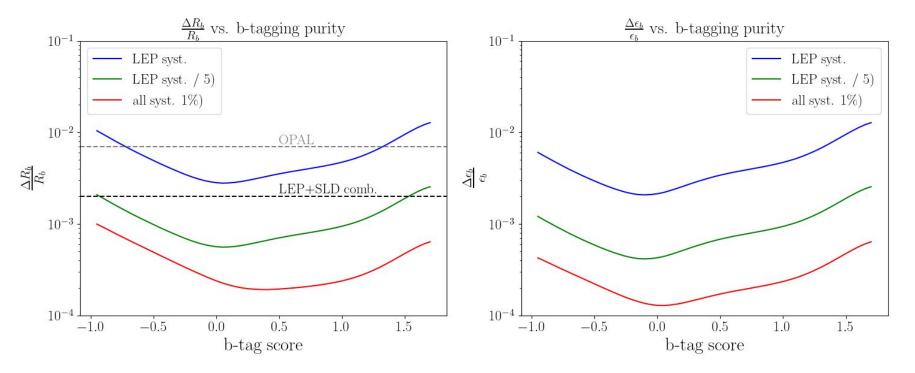
Comments

- In general, assuming all systematics of the same size (and independent of the tagging purity), largest sensitivity $\circ C_{b} > \varepsilon_{c} > \varepsilon_{uds} > C_{c} > C_{l}$
- However, in different regions of the phase space, different systematics will be dominant.
- To minimise impact of systematic uncertainties, trade-off between possible b-tagging working points of various purities
 - \circ C_b prefers loose tag WP
 - mistag rates prefer tight WP

Systematics at LEP (OPAL)

https://arxiv.org/pdf/hep-ex/9810002.pdf

Source	$\Delta \epsilon^{\rm c} / \epsilon^{\rm c}$ (%)	$\Delta \epsilon^{\rm uds} / \epsilon^{\rm uds}$ (%)	$\Delta R_{ m b}$	
Tracking resolution	1.24	4.0	0.00017	
Tracking efficiency	0.80	4.0	0.00014	
Silicon hit matching efficiency	0.82	2.8	0.00009	
Silicon alignment	0.58	2.1	0.00008	
Electron identification efficiency	1.11	0.5	0.00015	
Muon identification efficiency	0.64	0.2	0.00009	
c quark fragmentation	2.26	-	0.00028	
c hadron production fractions	3.66	_	0.00046	
c hadron lifetimes	0.55	-	0.00007	
c charged decay multiplicity	1.09	-	0.00014	
c neutral decay multiplicity	2.39	-	0.00030	
Branching fraction $B(D \to K^0)$	1.20	-	0.00015	
c semileptonic branching fraction	2.44	-	0.00031	
c semileptonic decay modelling	2.34	-	0.00029	
Gluon splitting to $c\overline{c}$	0.34	6.3	0.00018	
Gluon splitting to $b\overline{b}$	0.50	9.3	0.00027	
K ⁰ and hyperon production	-	0.3	0.00001	
Monte Carlo statistics (c, uds)	0.66	2.5	0.00010	
Subtotal $\Delta \epsilon^{\rm c}$ and $\Delta \epsilon^{\rm uds}$	6.65	13.3	0.00090	
Electron identification background				
Muon identification background				
Efficiency correlation $\Delta C^{\rm b}$				
Event selection bias				
Total				

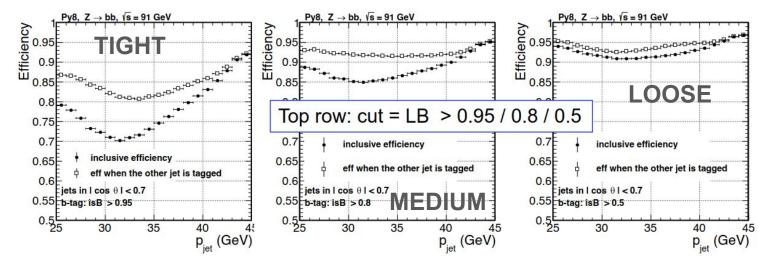

Correlation $C^{\rm b} - 1$ (%)	Vertex	Combined
Same hemisphere events	0.02 ± 0.02	-0.03 ± 0.02
Momentum correlation	0.04 ± 0.05	0.06 ± 0.03
Geometrical correlation	0.88 ± 0.02	0.71 ± 0.02
Component sum	0.94 ± 0.06	0.74 ± 0.04
Overall correlation	0.83 ± 0.20	0.93 ± 0.17

 $\frac{\Delta C_{b}}{\Delta \varepsilon_{c}} \approx 20\%$ $\frac{\Delta \varepsilon_{c}}{\varepsilon_{c}} \approx 7\%$

•
$$\Delta \varepsilon_{\rm uds}^{\rm c} / \varepsilon_{\rm uds} \approx 13\%$$

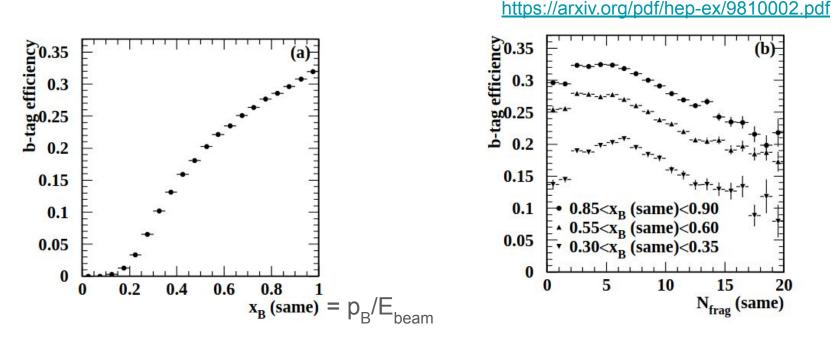
Results vs purity

Assumption: systematics constant over tagging score


- Optimal working point is ~ Loose depending on syst assumptions
- 1% syst. scenarios prefer slightly higher purity because larger relative reduction of error on C_b

Conclusion

- Discussed an attempt at reproducing double-tag R_{b} and ϵ_{b} at FCC-ee
- It should be possible to measure R_{b} and ϵ_{b} to < 0.1%
- Identified main sources of systematics and the sensitivity they impose on the precision of $R_{_b}$ and $\epsilon_{_b}$
- Requires control of systematics on the correlation between hemispheres to <1% level precision

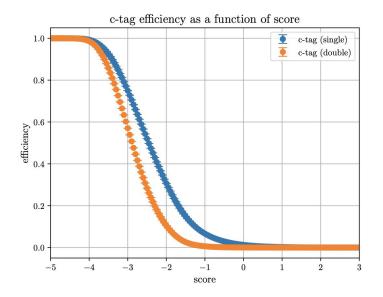

Backup

cf. Emmanuel

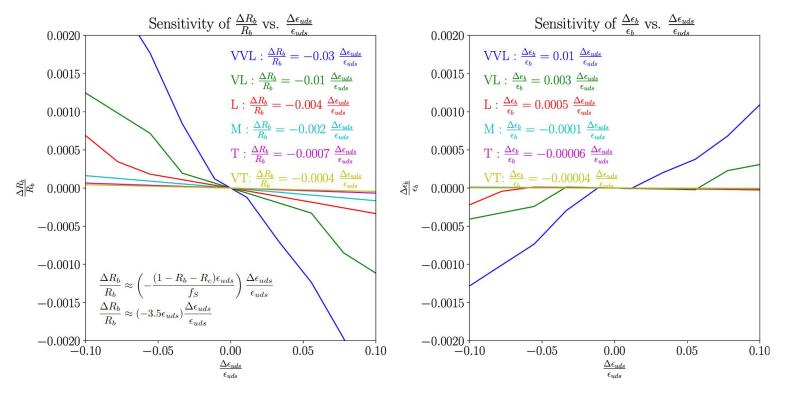
- Efficiency dependence with jet momentum
 - max eff at high p (OK)
 - non monotonic vs p (?)
- Correlation dependence with the jet momentum
 - max correlation at p_{iet} ~ 30 GeV
 - \circ correlation vanishes at $p_{jet} \sim E_{beam}$


- Correlation dependence with the tagger
 - max correlation at high purities

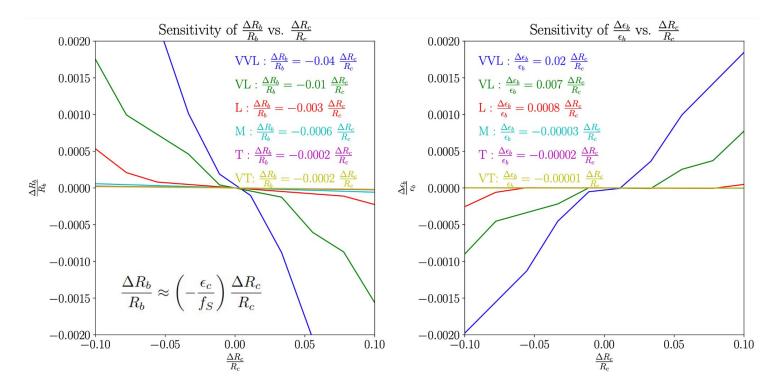
- B-tagging efficiency increases with b-hadron momentum
- B-tagging efficiency decreases if gluon emission in the same hemisphere


 $\rightarrow N_{frag}$ (number of fragmentation tracks) increases

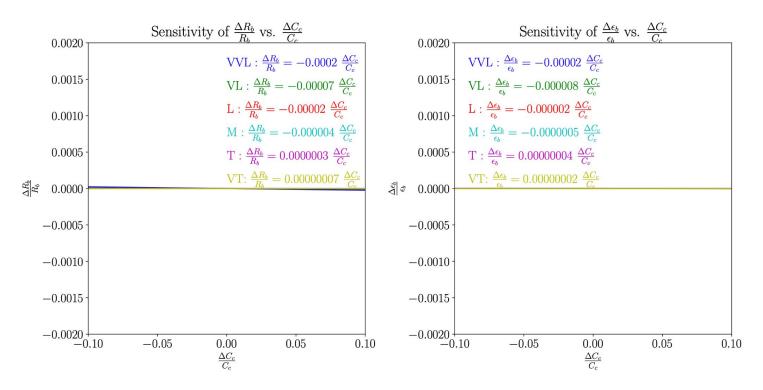
 \rightarrow SV more easily mistaken for PV


- gluon emission increases number of N_{frag} tracks
 - decreases available momentum \ddot{f} bhadron p_B and overall p_{iet} (increase the jet mass)
 - momentum balance \rightarrow opp. hemisphere also softer

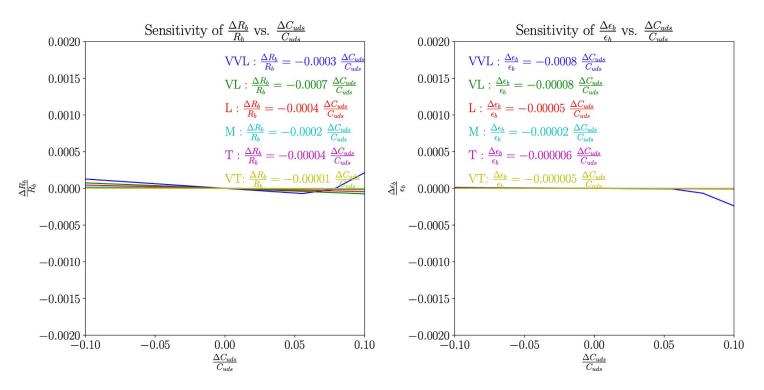
C-mistag rate efficiency and correlation



Sensitivity to light mistag rate


Tight tagging WPs are preferred to minimise impact of light quark mistag systematics
 Similar sensitivity than ε_c, (ε_{uds} < ε_c but R_{uds} ~ 3 R_c)

Sensitivity to R_c


• **Tight** tagging WPs are preferred to minimise impact of R_c parametric

Sensitivity to C_c

 Tight tagging WPs are preferred to minimise impact of C_c, but almost indifferent

Sensitivity to C_{uds}

 Tight tagging WPs are preferred to minimise impact of C_{uds}, but almost indifferent