$Z \rightarrow$ Hadrons at the FCC-ee

Jan Eysermans (Massachusetts Institute of Technology)

FCC Workshop, Annecy

January 30, 2024

Talk outline

Introduction to Precision Physics at the FCC-ee

Overview of the Z lineshape and Hadronic Cross-section

Repeating the LEP Lineshape and Hadronic Cross-section at FCC-ee

Summary and Conclusions

FCC-ee Run Plan

Plii

The baseline run plan for FCC-ee

- Z run has most events followed by WW run: *most stringent experimental requirements*
- 4 interaction points instead of 2 (updated for midterm report of FCC feasibility study)
- Sequence to run at different ECM to be defined: priorities (Higgs factory) and/or machine (RF installation)

Working point	Z, years 1-2	Z, later	WW, years 1-2	WW, later	ZH	$t\overline{t}$	
\sqrt{s} (GeV)	88, 91,	94	157, 1	63	240	340 - 350	365
Lumi/IP $(10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1})$	70	140	10	20	5.0	0.75	1.20
Lumi/year (ab^{-1})	34	68	4.8	9.6	2.4	0.36	0.58
Run time (year)	2	2	2	0	3	1	4
Number of events	610^{12}	Z	$2.410^8{ m V}$	WW	$\begin{array}{c} 1.4510^{6}\mathrm{HZ} \\ + \\ 45\mathrm{k}\mathrm{WW} \rightarrow \mathrm{H} \end{array}$	1.910^{6} +330k +80k WW	$b t \overline{t}$ HZ $V \rightarrow H$

Motivation for Precision Physics

No direct indication of new physics at LHC (so far)

- Increased effort in performing precision physics
- Recent examples are W mass, differential cross-sections, α_s
- With a lot of data delivered by HL-LHC we can understand better our detector and constrain experimental systematics

 \rightarrow HL-LHC will offer competitive precision physics

The next step towards high precision physics and probe the self-consistency of the Standard Model *as a whole*

FCC-ee offers the most suitable environment

- Increase the precision with order(s) of magnitude for Z/W physics
- Precisely study the Higgs properties and top

Any deviation or inconsistency will invoke new physics

The Lineshape

Measuring cross-section

$$\sigma(\sqrt{s}) = \frac{N_{\rm signal}}{\mathcal{L}} = \frac{N_{\rm selected} - N_{\rm background}}{\varepsilon A \mathcal{L}}$$

What can be extracted

- Z mass (m_z), Z width (Γ_z)
- Hadronic peak cross section ($\sigma_{0, hadr}$)
- Ratio of leptons (R₁)
- Etc. (number of light neutrinos, α_s)

Largest statistics in hadronic final state

mass, width and σ_0

Theory needed

- Deconvolute QED and the EW/QCD corrections
- Precise predictions/Monte Carlo

Lineshape Ingredients

$$\sigma(\sqrt{s}) = rac{N_{ ext{signal}}}{\mathcal{L}} = rac{N_{ ext{selected}} - N_{ ext{background}}}{arepsilon A \mathcal{L}}$$

Center-of-mass energy

- In situ using Resonant Depolarization (RDP) with non-colliding pilot bunches
- Improved calibration bringing down the uncertainties: absolute (100 keV) and point-to-point (40 keV)
- Beam energy spread 85 MeV ± 50 keV

	statistics	$\Delta \sqrt{s}_{\rm abs}$	$\Delta \sqrt{s}_{\rm syst-ptp}$	calib. stats.	$\sigma_{\sqrt{s}}$
Observable		$100 \mathrm{keV}$	$40\mathrm{keV}$	$200{\rm keV}/\sqrt{N^i}$	$85\pm 0.05\mathrm{MeV}$
$m_Z (keV)$	4	100	28	1	—
$\Gamma_{\rm Z} ~({\rm keV})$	4	2.5	22	1	10
$\sin^2 \theta_{\rm W}^{\rm eff} \times 10^6 \text{ from } A_{\rm FB}^{\mu\mu}$	2	-	2.4	0.1	-
$\frac{\Delta \alpha_{\rm QED}(m_Z^2)}{\alpha_{\rm QED}(m_Z^2)} \times 10^5$	3	0.1	0.9	-	0.1

(From: arxiv:1909.12245)

Luminosity – 10⁻⁴ absolute and 10⁻⁵ point-to-point achievable?

- Small-angle Bhabha scattering (large cross-section 78 nb)
 - Forward detection of e^+e^- , excellent control of geometry: $\Delta r \sim 1 \mu m$; $\Delta l \sim 50 \mu m$
 - Theory prediction improved from 0.061% at LEP to 0.037% recently, but still far the 0.01% goal to match with the statistical precision of σ_{0, hadr}
- Also $e^+e^- \rightarrow \gamma\gamma$ attractive: no Z dependence; 1 per 1000 Z events $\rightarrow 10^{-5}$ achievable
- Combination of both to achieve best precision, but more work/understanding needed

More updates expected this week

EPOL sessions on Thursday. Lumi yesterday

Lineshape Ingredients

$$\sigma(\sqrt{s}) = rac{N_{ ext{signal}}}{\mathcal{L}} = rac{N_{ ext{selected}} - N_{ ext{background}}}{arepsilon A \mathcal{L}}$$

Number of selected events

- Keep as many events as possible to retain statistical power; loose cuts to reduce backgrounds
- Background modeling and subtraction from Monte Carlo
 - Accurate MC with detailed detector description (and detectors will be complicated/granular)
 - Time-dependent following detector and run conditions
- Event pileup: expected rate at about 2 in a thousand events
 - Can be identified: µm vertex precision vs. 0.4 mm luminous region at Z pole
 - To be implemented in MC and studied

Acceptance and Efficiency

- Acceptance loss: particle outside detector fiducial volume
 - The higher the better (more stat + reduced error)
 - Detector granularity and active region
 - Excellent control of geometry and positioning (10⁻⁵)
 - Efficiency loss: particle inside detector volume, but not identified
 - Hermiticity important to avoid dead areas
 - Redundancy to control efficiencies: tracker/muon chambers, tracker/ECAL, tracker/HCAL

Lineshape Expectations

Observables	Present value	FCC-ee stat.	FCC-ee current syst.	FCC-ee ultimate syst.	Theory input (not exhaustive)
m _z (keV)	91187500 ± 2100	4	100	10?	Lineshape QED unfolding Relation to measured quantities
$\Gamma_{\rm Z}$ (keV)	2495500 ± 2300 [*]	4	25	5?	Lineshape QED unfolding Relation to measured quantities
σ ⁰ _{had} (pb)	41480.2 ± 32.5 [*]	0.04	4	0.8	Bhabha cross section to 0.01% $e^+e^- \rightarrow \gamma\gamma$ cross section to 0.002%
$N_{\nu}(\times 10^3)$ from σ_{had}	2996.3 ± 7.4	0.007	1	0.2	Lineshape QED unfolding $(\Gamma_{ m vv}\!/\Gamma_{\ell\ell})_{ m SM}$
R_{ℓ} (×10 ³)	20766.6 ± 24.7	0.04	1	0.2?	Lepton angular distribution (QED ISR/FSR/IFI, EW corrections)
$\alpha_{s}(m_{Z})$ (×10 ⁴) from R _ℓ	1196 ± 30	0.1	1.5	0.4?	Higher order QCD corrections for $\Gamma_{\rm had}$
R _b (×10 ⁶)	216290 ± 660	0.3	?	< 60 ?	QCD (gluon radiation, gluon splitting, fragmentation, decays,)

From: P.Janot talk at FCC theory workshop in June 2022

The Second Lineshape

Second lineshape to study the forward-backward asymmetries

- Decouples from cross section, no luminosity uncertainty
- A_{FB} constraints sin² θ_{W}^{eff} most significantly at the peak, small statistical uncertainty
- Off-peak points measure $\alpha_{\text{QED}}(m_{Z})$ just below and above the peak (87.9 or 94.3 GeV)

 $\mathbf{A}_{\mathrm{FB}}^{\mu\mu} = \frac{N_{\mathrm{F}} - N_{\mathrm{B}}}{N_{\mathrm{F}} + N_{\mathrm{B}}} \approx f(\sin^2 \theta_W^{\mathrm{eff}}) + \alpha_{\mathrm{QED}}(s) \frac{s - m_Z^2}{2s} g(\sin^2 \theta_W^{\mathrm{eff}})$

Needs accurate MC for ISR, FSR and Interference (IFI)

- QED/SM corrections crucial
- Theoretical uncertainties to the level of ~ 10⁻⁴, higher order calcs needed

Second Lineshape Expectations

Observables	Present value (×10 ⁴)	TeraZ / GigaZ stat.	TeraZ / GigaZ current syst.	Theory input (not exhaustive)
A_e from P_{τ} (FCC-ee)	151/ + 10	0.07	0.20	CM relation to measured quantities
A_e from A_{LR} (ILC)	1514 ± 19	0.15	0.80	Sivi relation to measured qualitities
A_{μ} from A_{FB} (FCC-ee)	1/56+01	0.23	0.22	
$A_{\mu}fromA_{FB}{}^{pol}$ (ILC)	1450 ± 91	0.30	0.80	Accorate QED (ISK, IFI, FSK)
A_{τ} from P_{τ} (FCC-ee)		0.05	2.00	
A_{τ} from A_{FB} (FCC-ee)	1449 ± 40	0.23	1.30	Prediction for non- τ backgrounds
A_{τ} from $A_{FB}{}^{pol}$ (ILC)		0.30	0.80	
A_b from A_{FB} (FCC-ee)	9000 ± 100	0.24	2.10	
A_b from A_{FB}^{pol} (ILC)	8990 ± 130	0.90	5.00	QCD calculations
A _c from A _{FB} (FCC-ee)	65100 + 210	2.00	1.50	
A _c from A _{FB} ^{pol} (ILC)	05400 ± 210	2.00	3.70	

From: P.Janot talk at FCC theory workshop in June 2022

Extracting the SM Parameters from the Lineshape

At LEP, fitting of two-fermion data using Pseudo-Observables (PO)

- Used by both theory and experiment
- Assumptions: QED correct (ISR/FSR/int), weak interaction V-A, effective Born Approx., and Z boson decays to fermions only, photon/Z interference
- Fitting of the entire cross section and forward-backward asymmetry datasets
- Various theory programs are interfaced (TOPAZ0, ZFITTER, ALIBHABHA, MIBA,) for radiative corrections
- Experimental uncertainties taken into account

What about FCC-ee?

- Similar approach? Still feasible to use the Pseudo-Observables approach?
- Or direct comparison between MC and Data to extract physics (differential measurements)?
- How to incorporate flexibly theory corrections?
- Modern tools necessary/to be developed to extract physics

Parameter	Treatment of C	harged Leptons	Standard
	non-universality	universality	Model
$m_{\rm Z}$ [MeV]	91189.8 ± 3.1	91189.5 ± 3.1	—
$\Gamma_{\rm Z}$ [MeV]	2502.5 ± 4.2	2502.5 ± 4.2	$2492.7{}^{+3.8}_{-5.2}$
$\sigma_{\rm had}^0$ [nb]	41.535 ± 0.055	41.535 ± 0.055	41.476 ± 0.012
$R_{ m e}$	20.816 ± 0.089		20.733 ± 0.018
R_{μ}	20.861 ± 0.097		20.733 ± 0.018
$R_{ au}$	20.792 ± 0.133		20.780 ± 0.018
R_ℓ	—	20.810 ± 0.060	20.733 ± 0.018
$A_{ m FB}^{0, m e}$	0.0106 ± 0.0058		0.0151 ± 0.0012
$A^{0,\mu}_{ m FB}$	0.0188 ± 0.0033	_	0.0151 ± 0.0012
$A_{ m FB}^{0, au}$	0.0260 ± 0.0047		0.0151 ± 0.0012
$A_{ m FB}^{0,\ell}$		0.0192 ± 0.0024	0.0151 ± 0.0012
χ^2/dof	158/166	163/170	_

Repeating the LEP Lineshape

Refurbish old L3 Fortran code to repeat the Lineshape using the FCC-ee numbers

- Input: 3 energy points: 91.2 GeV: 125 ab⁻¹; 88.0, 94.0 GeV: 40 ab⁻¹
- Output: the pseudo observables: m_z , Γ_z and $\sigma_{0, hadr}$
 - 1. Statistical uncertainty on hadrons only, nothing else
 - 2. Add fully correlated systematic uncertainty as large as peak stat. uncertainty
 - 3. Add stat. uncertainty on luminosity corresponding to 14 nb cross section
 - 4. Add 1.4×10^{-5} syst. fully correlated, and another 10^{-5} uncorrelated on luminosity
 - 5. Add 10 keV correlated uncertainty on ECMS (abs.)
 - 6. Or alternatively 100 keV correlated uncertainty on ECMS (abs.)

Setup	$\Delta(m_{Z)}$ (keV)	$\Delta(\Gamma_{Z})$ (keV)	$\Delta(\sigma_{0, hadr})$ (pb)
1	3.0	2.9	0.026
2	3.0	2.9	0.034
3	3.6	3.6	0.047
4	16	22	0.73
5	18	22	0.73
6	101	22	0.73

Repeating the LEP Hadronic Cross-Section

Plii

Repeat the LEP-L3 hadronic cross-section for a single energy point

- Explore different Monte Carlo generators and assess impact on theory
- Modeling of hadronization, particle multiplicities
- Assessment of backgrounds
- Detector requirements in terms of acceptance and efficiency

Use the available FCC analysis framework and tools (FastSim Delphes – IDEA detector)

- Detector simulation very close to ideal but realistic? FullSim?
- (major) differences expected in terms of resolutions, backgrounds etc.

Extrapolate and interpret results to FCC-ee luminosities:

- Luminosity from 44.84 pb⁻¹ to 125 ab⁻¹ (1.6 M \rightarrow 3.8 x 10⁶ M)
- Uncertainty from 8.5 x 10^{-4} to 5 x 10^{-7}

All results work in progress! And much more to study

How it looked like at L3

Selection criteria: $0.5 < E_{vis}/\sqrt{s} < 1.5$; number of clusters/particles > 15; energy imbalance > 0.6

- Calorimetric-based analysis cluster counting
- Noise in tails, number of clusters in MC do not agree
- Two-photon background is leaking

How it looked like at L3

15

Selection criteria: $0.5 < E_{vis}/\sqrt{s} < 1.5$; number of clusters/particles > 15; energy imbalance > 0.6

- Calorimetric-based analysis cluster counting
- Noise in tails, number of clusters in MC do not agree
- Two-photon background is leaking (mainly in endcap)

Comparing the visible energy (normalized)

- Resolution much (much) better at FCC-ee; tail is physics
- Two-photon and Tau background much lower yields

Cluster/particle multiplicities barrel ($|\cos(\theta_t)| < 0.74$)

- Distributions look quite similar
- Counting definition between clusters (LEP) and Reconstructed particles (FCC-ee)

Cluster/particle multiplicities endcap ($|\cos(\theta_t)| > 0.74$)

- Distributions look quite similar
- Counting definition between clusters (LEP) and Reconstructed particles (FCC-ee)

Transverse energy imbalance

- Resolution much (much) better at FCC-ee
- Tau lower, two-photon in the right place

Transverse energy imbalance

- Resolution much (much) better at FCC-ee
- Tau lower, two-photon in the right place

Acceptance and Efficiency considerations

Comparison of acceptance

- LEP acceptance down to $12^{\circ} \rightarrow \cos(12^{\circ}) = 0.9781$ (L3)
- FCC-ee acceptance down to $7^{\circ} \rightarrow \cos(7^{\circ}) = 0.9940$ (IDEA)

$\textbf{Z} \rightarrow \textbf{hadrons}$ have very high acceptance

- Enormous improvement in number of lost particles ($2.2\% \rightarrow 0.75\%$)
- Jets are too big to not register: efficiency very close to 100%
- No trigger, which is good but redundancy in detectors much needed for precise efficiency determination
- Tracker vs. calorimeter based analysis essential (add timing layer?) \rightarrow PID
- Detector/machine conditions, noise \rightarrow realistic detector Monte Carlo
 - Collision angle should not matter, as long as it is simulated well to be implemented and checked
 - Beam energy spread already implemented

Quantity/Detector	ALEPH	DELPHI	L3	OPAL
Acceptance	s'/s > 0.1	s'/s > 0.1	s'/s > 0.1	s'/s > 0.1
Efficiency	99.1	94.8	99.3	99.5
Background	0.7	0.5	0.3	0.3

Acceptance of Different Generators

Acceptance defined as: #events after all selection cuts / # initial events

- Reduced by geometrical cuts in detector (beam pipe) \rightarrow to be maximized to minimize the error on A
- Whizard and KKMC do not close with 0.07 %
- Underlying distribution of polar angle of particles different leading to sizeable acceptance differences
- Residual generator differences to be understood to understand nature of discrepancy

Generator	Acceptance (%)	Stat. Error (% abs.)
Whizard	99.46	0.0017
KKMCee	99.39	0.0035
Difference	0.07	0.0039

Corresponds to a 6x10⁻⁴ uncertainty on the cross-section

Particle Multiplicity

Compare Pythia hadronization and showering modelling

- Several tunes available: Pythia defaults, OPAL, ALEPH
- Pythia 8 vs Pythia 6
- Different generators (Whizard, Pythia)

Non-negligible differences between different configurations

- More studies needed (modern Pythia8 tunes for e⁺e⁻)
- Differences are sufficiently large to be studied with LEP statistics ?

Particle Multiplicity – ALEPH comparison

rison

Comparison of charged particle multiplicity

- Unfolded charged particle distribution from ALEPH available
- Good agreement obtained to first order need to compare systematically

More in-depth studies needed \rightarrow with LEP data in edm4hep? (see talk M.Maggi this morning)

- Different hadronization and showering: tunes and implementations (Pythia, Herwig, ...)
- Factorize differences of generator vs. hadronization/showering

Tau Background

Tau background mainly cut based on particle multiplicity

- High tau prongs have larger uncertainties and are in the signal region for hadron cross-section
- Strongly depends on the Tau BRs used: 10-20% difference around cut value N=15
- Mainly comes from different Tau BR (Tauola vs Pythia) to be verified, and BRs to be aligned
- Correlated impact on the visible energy

Two-photon Background

Two-photon events leak into the visible spectrum of $Z \rightarrow$ hadron phase space

- Non-negligible background; xsec rises towards low momentum transfer
- Difficult to model large errors on cross-section and shapes (visible energy, number of particles), especially at low energies
- Mainly untagged scattered electrons/positrons (in beampipe) leading to imbalance of longitudinal energy
- LEP experiments relied on a combination of Monte Carlo and data-driven techniques, though all within stat. uncertainty on the measurement

For FCC-ee, clearly a better understanding needed

- Key issues: shape in visible energy and number of particles produced
- Tails are sensitive to noise, promoting them to multi-hadron events, other final states
- Off-peak running as "control region", or explicit tagging of e⁺/e⁻?
- Better MC is needed (theory community)

Two-photon Background

Explore different MC generators: Whizard and Pythia

- Both implemented two-photon as Equivalent Photon Approximation (EPA)
- Introduces beam structure functions to describe the process

Compare "simplest" $\mu\mu$ final state and *tune*, then check on hadrons

- Differences observed, work in progress (iterating with authors)

Two-photon Background

Comparison Whizard and Pythia8 for two-photon \rightarrow hadrons

- Pythia pushed towards higher qq energies different cut-offs in model?
- Fine-tuning and quantifying differences ongoing

28

Summary and Conclusions

Electroweak Physics at FCC-ee will improve main SM parameters up to 3 orders of magnitude

Clearly, this puts enormous constraints on the machine, theory and detectors

- Luminosity and energy calibration
- Detector requirements to cope with acceptance and efficiency
- Many inputs needed from theory community to have improved MC and reduce theoretical uncertainties

Started to explore the Z lineshape with the FCC tools

- More realistic simulation, comparison with LEP
- Extrapolate findings to FCC-ee luminosities and assess the residual experimental/theoretical uncertainties
- Especially fragmentation/hadronization and two-photon background under study
- Presented preliminary results... and much more exciting work ahead!