

Measurement of R_b with an exclusive *b*-tagger

FCC Physics Workshop Annecy 2024

Kevin Kröninger¹, Romain Madar², Stéphane Monteil², Lars Röhrig^{1,2} 01/30/2024

¹Department of Physics – TU Dortmund University ²Laboratoire de Physique de Clermont – Université Clermont-Auvergne

heinrichhertzstiftung

CC

Heavy-quark measurements at the Z-pole

- Best suited at FCC-ee for rich heavy-quark programme? $\rightarrow Z$ -pole with $N_Z = 5 \cdot 10^{12}$
- Coupling of the Z to b-quark probes fundamental SM parameters

	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m _z [GeV]	91.1871 ± 0.0021	.08	1
Γ _z [GeV]	2.4944 ± 0.0024	56	-
σ_{hadr}^0 [nb]	41.544 ± 0.037	1.75	
R _e	20.768 ± 0.024	1.16	
A ^{0,e}	0.01701 ± 0.00095	.80	-
A _e	0.1483 ± 0.0051	.21	•
A _r	0.1425 ± 0.0044	-1.07	-
sin²θ ^{lept}	0.2321 ± 0.0010	.60	-
m _w [GeV]	80.350 ± 0.056	62	-
R _b	0.21642 ± 0.00073	.81	-
R _c	0.1674 ± 0.0038	-1.27	
A ^{0,b}	0.0988 ± 0.0020	-2.20	
A ^{0,c}	0.0692 ± 0.0037	-1.23	_
A _b	0.911 ± 0.025	95	-
A _c	0.630 ± 0.026	-1.46	_
sin ² θ ^{lept}	0.23099 ± 0.00026	-1.95	
sin²θ _w	0.2255 ± 0.0021	1.13	
m _w [GeV]	80.448 ± 0.062	1.02	-
m _t [GeV]	174.3 ± 5.1	.22	•
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02804 ± 0.00065	05	
			-3-2-10123

Heavy-quark measurements at the Z-pole

- Best suited at FCC-ee for rich heavy-quark programme? $\rightarrow Z$ -pole with $N_Z = 5 \cdot 10^{12}$
- Coupling of the Z to b-quark probes fundamental SM parameters
- Statistics allow for new ways: combining flavour and EWPO → Ultra pure beauty-flavour tagging

	Measurement	Pull	Pull -3 -2 -1 0 1 2 3
m _z [GeV]	91.1871 ± 0.0021	.08	
Γ _z [GeV]	2.4944 ± 0.0024	56	-
σ_{hadr}^{0} [nb]	41.544 ± 0.037	1.75	
R _e	20.768 ± 0.024	1.16	
A ^{0,e}	0.01701 ± 0.00095	.80	-
A _e	0.1483 ± 0.0051	.21	
Α _τ	0.1425 ± 0.0044	-1.07	_
$sin^2 \theta_{eff}^{lept}$	0.2321 ± 0.0010	.60	-
m _w [GeV]	80.350 ± 0.056	62	-
R _b	0.21642 ± 0.00073	.81	-
R _c	0.1674 ± 0.0038	-1.27	
A ^{0,b}	0.0988 ± 0.0020	-2.20	
A ^{0,c} _{fb}	0.0692 ± 0.0037	-1.23	-
A _b	0.911 ± 0.025	95	_
A _c	0.630 ± 0.026	-1.46	_
$sin^2 \theta_{eff}^{lept}$	0.23099 ± 0.00026	-1.95	
sin ² 0 _w	0.2255 ± 0.0021	1.13	
m _w [GeV]	80.448 ± 0.062	1.02	_
m _t [GeV]	174.3 ± 5.1	.22	•
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02804 ± 0.00065	05	
			-3-2-10123

Principle of the measurement

- \blacksquare Produce $Z \rightarrow q \bar{q}$ events at $\sqrt{s} = 91 \, {\rm GeV}$
- Event topology: two back-to-back particle sprays (hemispheres)
- With $N_{Z \to q\bar{q}} = 5 \cdot 10^{12}$ events: measurements limited by $\sigma_{\text{syst.}}$
- Need to reduce $\sigma_{\text{syst.}}$ to $\mathcal{O}(\sigma_{\text{stat.}})$

Principle of the measurement: R_b

• Sensitive to vertex corrections: $R_b = \frac{\Gamma_{Z \to b\bar{b}}}{\Gamma_{Z \to q\bar{q}}}$

- Single tag: $N_1 = 2N_Z \cdot (R_b \varepsilon_b + R_c \varepsilon_c + R_{uds} \varepsilon_{uds})$
- **Double tag:** $N_2 = N_Z \cdot (R_b \varepsilon_b^2 C_b + R_c \varepsilon_c^2 C_c + R_{uds} \varepsilon_{uds}^2 C_{uds})$
- N_1 , N_2 , N_Z counted, all other unknown: measure R_b and ε_b simultaneously
- Standard LEP tools (vertex charge, lepton tag): $\sigma_{\text{syst.}}$ dominated by *udsc*-misidentification

Principle of the measurement: R_b

- Sensitive to **vertex corrections:** $R_b = \frac{\Gamma_{Z \to b\bar{b}}}{\Gamma_{Z \to a\bar{a}}}$
- Single tag: $N_1 = 2N_Z \cdot (R_b \varepsilon_b + R_c \varepsilon_e + R_{uds} \varepsilon_{uds})$
- **Double tag:** $N_2 = N_Z \cdot (R_b \varepsilon_b^2 C_b + R_c \varepsilon_c^2 C_e + R_{uds} \varepsilon_{uds}^2 C_{uds})$
- N_1 , N_2 , N_Z counted, all other unknown: measure R_b and ε_b simultaneously
- Standard LEP tools (vertex charge, lepton tag): $\sigma_{syst.}$ dominated by *udsc*-misidentification

Proposal: b-hemisphere tagger

Hemisphere **flavour**- and **charge** tagging by exclusively reconstructing *b*-hadrons

- Potential purity of 100 %
- Efficiency of 1 %

Related to udsc-physics 87.8 12.2 Hemisphere correlation

Setting the stage

• Exclusive *b*-tagger can play **central role** to reduce $\sigma^{\text{syst.}}$

	R _b
<i>b</i> -hadrons	B^+ , B^0_d , B^0_s , Λ^0_b
Requirements	Flavour
Advantages	Remove <i>udsc</i> -physics contribution
Remaining $\sigma_{ m syst.}$	Hemisphere correlation <i>C_b</i>

• $\varepsilon_b \geq 1.11$ % with > 200 *b*-hadron decay modes \checkmark

■ Validate purity on $4 \cdot 10^7 Z \rightarrow q\bar{q}$ (winter2023) on 6/200 representative modes (varying $N_{\text{trk.}}$, N_{π^0})

1.	Fully charged, two tracks	$B^+ ightarrow ar{D}^0 \pi^+ ightarrow [K^+ \pi^-]_{ar{D}^0} \ \pi^+$
2.	Fully charged, three tracks	$B^+ \to \bar{D}^0 D^+_s \to [K^+ \pi^-]_{\bar{D}^0} [K^+ K^- \pi^+]_{D^+_s}$
3.	Fully charged, four tracks	$B^+ o ar{D}^0 \pi^+ o [K^+ 2 \pi^- \pi^+]_{ar{D}^0} \pi^+$
4.	One π^{0} , two tracks	$B^+ ightarrow ar{D}^0 \pi^+ ightarrow [\mathcal{K}^+ \pi^- \pi^0]_{ar{D}^0} \pi^+$
5.	Two π^{0} , two tracks	$B^+ ightarrow ar{D}^0 \pi^+ ightarrow [K^+ \pi^- 2 \pi^0]_{ar{D}^0} \ \pi^+$
6.	Two leptons	$B^+ o J/\psi {\cal K}^+ o [\ell^+ \ell^-]_{J/\psi} {\cal K}^+$

Setting the stage

Exclusive b-tagger can play central role to reduce σ^{syst.}

	R _b
<i>b</i> -hadrons	$B^+, B^0_d, B^0_s, \Lambda^0_b$
Requirements	Flavour
Advantages	Remove <i>udsc</i> -physics contribution
Remaining $\sigma_{ m syst.}$	Hemisphere correlation <i>C_b</i>

• $\varepsilon_b \geq 1.11$ % with > 200 *b*-hadron decay modes \checkmark

■ Validate purity on $4 \cdot 10^7 Z \rightarrow q\bar{q}$ (winter2023) on 6/200 representative modes (varying $N_{\text{trk.}}$, N_{π^0})

Fast Simulation (IDEA)

Exclusive *b*-hadron reconstruction

- Combine K and π (100% particle-ID) tracks to D^0 candidates (emulate 50 µm vertex resolution)
- D^0 candidates + π track to B^+ candidate: cut on B^+ flight distance of 300 µm (boost of ~ 6)
- Observable to quantify **purity**: invariant *b*-hadron mass spectrum with $E_B > 20 \text{ GeV}$

First: focus on **mass-peak region** to get control on $\sigma^{\text{syst.}}$

 \rightarrow Purity of 99.8%, contamination in signal region from $q \rightarrow q + [b\bar{b}]_g$

Exclusive *b*-hadron reconstruction

- Combine K and π (100% particle-ID) tracks to D^0 candidates (emulate 50 µm vertex resolution)
- D^0 candidates + π track to B^+ candidate: cut on B^+ flight distance of 300 µm (boost of ~ 6)
- Observable to quantify **purity**: invariant *b*-hadron mass spectrum with $E_B > 20 \text{ GeV}$

First: focus on mass-peak region to get control on σ^{syst.}

 \rightarrow Purity of 99.8%, contamination in signal region from $q \rightarrow q + [b\bar{b}]_g$

Exclusive *b*-hadron reconstruction

- Combine K and
- But there's more, isn't there? Yes!

ex resolution)

D⁰ candidates +

post of \sim 6)

• Observable to quantify **purity**: invariant *b*-hadron mass spectrum with $E_B > 20 \text{ GeV}$

■ Part. reconstructed are no background! \rightarrow efficiency gain by enlarging mass window to no loss in purity! ■ But for now: Examine B^+ candidates in mass-peak region

Fast Simulation (IDEA)

Hemisphere correlation: PV measurement uncertainty

• LEP found: C_b mainly departed from 1 because of **primary-vertex measurement uncertainty** σ_{PV}

Hemisphere correlation: PV measurement uncertainty

- LEP found: C_b mainly departed from 1 because of **primary-vertex measurement uncertainty** σ_{PV}
- LEP did: reconstructed two PV per hemisphere
- Sample: 10⁶ FullSim CLD events of $B^+ \to [K^+\pi^-]_{\bar{D}^0}\pi^+$ (forcing both legs with EvtGen)

Hemisphere correlation: PV measurement uncertainty

- LEP found: C_b mainly departed from 1 because of **primary-vertex measurement uncertainty** σ_{PV}
- LEP did: reconstructed two PV per hemisphere
- Sample: 10⁶ FullSim CLD events of $B^+ \to [K^+\pi^-]_{\bar{D}^0}\pi^+$ (forcing both legs with EvtGen)
- Here: select tracks for reconstruction by using optimised cuts (v_1 and v_2) in **luminous region**

- So far: systematic uncertainty considered
 - Hemisphere correlation: $C_b = 1.009 \pm 0.003 \Rightarrow \frac{\sigma(\Delta C_b)}{\Delta C_b} \approx 33\%$

Full Simulation (CLD)

Results: R_b uncertainty budget

- So far: systematic uncertainty considered
 - Hemisphere correlation: $C_b = 1.009 \pm 0.003 \Rightarrow \frac{\sigma(\Delta C_b)}{\Lambda C_b} \approx 33\%$
 - Signal region contamination from gluon splitting: $g_{b\bar{b}} = (2.47 \pm 0.56) \cdot 10^{-3} \Rightarrow \frac{\sigma(g_{b\bar{b}})}{g_{b\bar{b}}} \approx 23\%$
- **Target:** $\sigma^{\text{stat.}}(R_b) = 2.2 \cdot 10^{-5}$ with exclusive tagger and $\varepsilon_b = 1\%$

	Luminous region
Current syst. precision	$\sigma^{\rm tot.}(R_b) = 6.4 \cdot 10^{-4}$

- 1 % syst. precision $\sigma^{\text{tot.}}(R_b) = 2.9 \cdot 10^{-5}$

Extension for the measurement of A_{FB}^b

- We have an ultra pure tagger at hand: what else?
- As seen: exclusive *b*-tagger can play central role to reduce $\sigma^{\text{syst.}}$
- Especially interesting for $A_{\text{FB}}^{b} = \frac{N_{\text{F}} N_{\text{B}}}{N_{\text{F}} + N_{\text{B}}}$ $\rightarrow \text{Expected } \sigma_{\text{stat.}}(A_{\text{FB}}^{b}) = 1.05 \cdot 10^{-5}$ (current: $\sigma_{\text{tot.}}(A_{\text{FB}}^{b}) = 1.6 \cdot 10^{-3}$)

L. Röhrig | 01/30/2024

	R _b	A ^b _{FB}
<i>b</i> -hadrons Requirements	B^+ , B^0_d , B^0_s , Λ^0_b Flavour	B ⁺ , Λ _b Flavour, <i>p</i> & Q
	Remove udsc-ph	ysics contribution
Advantages		Overcome mixing dilutions and possibly reduce hemi- sphere confusion
Remaining $\sigma_{\rm syst.}$	Hemisphere correlation C_b	QCD corrections

Systematic uncertainty of A^b_{FB}

- Dominant systematic uncertainty: (hard) gluon radiation from b-quark (up to hemisphere confusion)
- Since *b*-quark direction not directly accessible: use **thrust** $\vec{\mathcal{T}}$
- Direction of reconstructed *b*-hadron: estimator for gluon emission quantity
- The smaller the angle $\angle(\vec{B}_{tag}, \vec{T})$, the softer is the gluon radiation

Full Simulation (CLD)

Gluon radiation estimator: $\angle(\vec{B}_{tag}, \vec{T})$

- Quantify the amount of gluon radiation by $\angle(\vec{B}, \vec{T})$
- $\scriptstyle \bullet$ Cut on maximally allowed angle reduces QCD-related effects by 50 %

Gluon radiation estimator: $\angle(\vec{B}_{tag}, \vec{T})$

- Quantify the amount of gluon radiation by $\angle(\vec{B},\vec{T})$
- $\scriptstyle \bullet$ Cut on maximally allowed angle reduces QCD-related effects by 50 %
- Slight degradation of statistical precision (~7%) to $\sigma_{\text{stat.}} = 1.12 \cdot 10^{-5}$ (Z-pole extrapolation)

 $ightarrow \sigma_{
m syst.}$ WIP by varying *b*-fragmentation fraction, renormalisation scale & parton shower model

Conclusions and Outlook

- Fruitful synergy in flavour and EWPO measurements at FCC-ee
- Use exclusive *b*-(flavour) tagger to eliminate *udsc*-physics contributions and to get $\mathcal{O}(\sigma_{\text{stat.}}) = \mathcal{O}(\sigma_{\text{syst.}})$
- R_b measurement: luminous region cut essential to reduce hemisphere correlations

$$\rightarrow \text{ Now:} \quad R_b = \mu(R_b) \pm 2.2 \cdot 10^{-5} \text{(stat.)} \pm 6.4 \cdot 10^{-4} \text{(syst.)}$$

$$\rightarrow \text{ With } \frac{\sigma(\Delta C_b)}{\Delta C_b} = 1 \text{ \%:} \quad R_b = \mu(R_b) \pm 2.2 \cdot 10^{-5} \text{(stat.)} \pm 1.9 \cdot 10^{-5} \text{(syst.)}$$

- A^b_{FB} measurement: overcome mixing dilutions by using B^+ and Λ^0_b decays
- Cut on opening angle between thrust and *b*-hadron direction mitigates QCD effects (WIP!) $\rightarrow \sigma_{\text{stat.}} = 1.12 \cdot 10^{-5} \text{ with } \angle (B_{\text{tag}}, \vec{T}) < 10^{\circ}$

B^{\pm} reconstruction at CLD

- Using the collection tracks vertexed with the DELPHES vertexing capabilities
- Recent developments allow for neutral peusdotracks, here: $ar{D}^0 o K^+ \pi^-$

Decay mode $B^+ \rightarrow [K^+\pi^-]_{\bar{D}^0}\pi^+$

Decay mode $B^+ \rightarrow [K^+\pi^-\pi^0]_{\bar{D}^0}\pi^+$

Decay mode $B^+ \rightarrow [K^+\pi^- 2\pi^0]_{\bar{D}^0}\pi^+$

Decay mode $B^+ \rightarrow [K^+ 2\pi^- \pi^+]_{\bar{D}^0} \pi^+$

Decay mode $B^+ ightarrow [\ell^+ \ell^-]_{J/\psi} K^+$

Decay mode $B^+ ightarrow [K^+K^-\pi^+]_{D^+_s} [K^+\pi^-]_{\bar{D}^0}$

Hemisphere correlation: momentum dependence

Single-/double-tag efficiencies and C_b as function of the highest-momentum *B*-meson of the event *p*-value from χ^2 -test with $C_b = 1$

Hemisphere correlation: number of event tracks

- Single-/double-tag efficiencies and C_b as function of the number of tracks of the event
- *p*-value from χ^2 -test with $C_b = 1$

Hemisphere correlation: $cos(\theta_B)$

Full Simulation (CLD)

Single-/double-tag efficiencies and C_b as function of the B-meson with highest cos(θ_B) of the event
 p-value from χ²-test with C_b = 1

