





# Luminosity Measurement and First Results from full LumiCal Simulation

7<sup>th</sup> FCC Physics Workshop Jan 29 – Feb 2, 2023 LAPP, Annecy

<u>Mogens Dam</u> & Johanna H. Jallberg Niels Bohr Institute

# Disclaimer

- Today's talk will be mainly presenting results from first full simulation studies of the LumiCals
- Results are fresh and will be consolidated/extended over the coming months
   Presented results and conclusions are clearly of a preliminary nature
- ◆ For a more general overview talk of the small angle Bhabha luminosity measurement see, e.g.

Dam, <u>FCC-ee Luminosity Measurement and LumiCal</u>, FCC-ee MDI and IR Mockup Workshop, Frascati, Nov. 2023

# Luminosity Measurement with Small-angle Bhabha Scattering

• Bhabha scattering = Elastic scattering  $e^+e^- \rightarrow e^+e^-$ 

Dominated by t-channel photon exchange

Very strongly forward peaked





Measured with set of two calorimeters; one at each side of the IP

Crossing beams: Center monitors around outgoing beam lines





Image: Minimize dependence on beam parameters and misalignment:

- \* Restricted acceptance: Average over two counting rates: Rate = ½ × (SideA + SideB)
- Important systematics from acceptance definition: In particular minimum scattering angle

$$rac{\delta \sigma^{
m acc}}{\sigma^{
m acc}} \simeq rac{2 \delta heta_{
m min}}{ heta_{
m min}} = 2 \left( rac{\delta R_{
m min}}{R_{
m min}} \oplus rac{\delta z}{z} 
ight)$$

#### Normalisation to 10<sup>-4</sup>

- ◆ The goal at FCC-ee is an absolute normalization to 10<sup>-4</sup>
- After much effort, the precision on the absolute luminosity at LEP was eventually dominated by theory

• Example **OPAL** - most precise measurement at LEP:

#### Theory: 5.4 × 10<sup>-4</sup> Experiment: 3.4 × 10<sup>-4</sup>

Theory precision

□ Since LEP, theory precision has improved to **3.7** × **10**<sup>-4</sup>

- □ And a path is outlined to reach **10**<sup>-4</sup>
- Instrumental precision major effort to go to sub-permille level



arXiv:1912.02067

arXiv:9910066

arXiv:1902.05912

sics Workshop, Annecy Via precise metrology, achieved 4.4 μm precision on inner acceptance border

**OPAL Breakdown of Systematics** 

Table 24: This table summarizes the experimental systematic uncertainties on the absolute  $L_{\rm RL}$  luminosity measurement for the nine data samples. The lines labeled correlated and uncorrelated refer to errors correlated and uncorrelated among the samples. All errors are in units of  $10^{-4}$ .

# "simulation"

"external"

| Uncertainty                                  | section | 93 -2 | 93 pk | 93 + 2 | 94a  | 94b  | 94c  | 95 -2 | 95   | 95 + 2 |
|----------------------------------------------|---------|-------|-------|--------|------|------|------|-------|------|--------|
| Radial Metrology                             | 2.3     |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| correlated                                   |         | 1.40  | 1.40  | 1.40   | 1.40 | 1.40 | 1.40 | 1.40  | 1.40 | 1.40   |
| Radial Thermal                               | 2.3.2   |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.06  | 0.00  | 0.06   | 0.09 | 0.11 | 0.11 | 0.25  | 0.25 | 0.25   |
| correlated                                   |         | 0.18  | 0.18  | 0.18   | 0.18 | 0.18 | 0.18 | 0.18  | 0.18 | 0.18   |
| Inner Anchor                                 | 4.1.4   |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.23  | 0.23  | 0.23   | 0.23 | 0.23 | 0.23 | 0.58  | 0.58 | 0.58   |
| correlated                                   |         | 1.36  | 1.36  | 1.36   | 1.36 | 1.36 | 1.36 | 1.36  | 1.36 | 1.36   |
| Outer Anchor                                 | 4.1.4   |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.13  | 0.13  | 0.13   | 0.13 | 0.13 | 0.13 | 0.28  | 0.28 | 0.28   |
| correlated                                   |         | 0.31  | 0.31  | 0.31   | 0.31 | 0.31 | 0.31 | 0.30  | 0.30 | 0.30   |
| Z Metrology                                  | 2.4     |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.37  | 0.37 | 0.37   |
| correlated                                   |         | 0.41  | 0.41  | 0.41   | 0.41 | 0.41 | 0.41 | 0.41  | 0.41 | 0.41   |
| Background                                   | 8       | 0.70  | 0.70  | 0.50   | 0.75 | 0.75 | 0.75 | 0.70  | 0.80 | 0.70   |
| uncorrelated                                 |         | 0.76  | 0.76  | 0.76   | 0.75 | 0.75 | 0.75 | 0.76  | 0.76 | 0.76   |
| correlated                                   | 6       | 0.75  | 0.75  | 0.75   | 0.75 | 0.75 | 0.75 | 0.75  | 0.75 | 0.75   |
| Trigger                                      | 8       | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| uncorrelated                                 |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| Wagon Tagger                                 | 6       | 0.04  | 0.04  | 0.04   | 0.04 | 0.04 | 0.04 | 0.04  | 0.04 | 0.04   |
| wagon Tagger                                 | 8       | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.02  | 0.02 | 0.02   |
| correlated                                   |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.02  | 0.02 | 0.02   |
| Total External (Ac)                          |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| uncorrelated                                 |         | 0.81  | 0.81  | 0.81   | 0.80 | 0.80 | 0.81 | 1.10  | 1.10 | 1.10   |
| correlated                                   |         | 2.16  | 2.16  | 2.16   | 2.16 | 2.16 | 2.16 | 2.16  | 2.16 | 2.16   |
| Energy                                       | 4.3     | 2.10  | 2.10  | 2.10   | 2.10 | 2.10 | 2.10 | 2.10  | 2.10 | 2.10   |
| uncorrelated                                 |         | 0.10  | 0.10  | 0.10   | 0.10 | 0.10 | 0.10 | 0.10  | 0.10 | 0.10   |
| correlated                                   |         | 1.80  | 1.80  | 1.80   | 1.80 | 1.80 | 1.80 | 1.80  | 1.80 | 1.80   |
| Beam parameters                              | 8       |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 | °       | 0.57  | 0.57  | 0.57   | 0.57 | 0.57 | 0.57 | 0.57  | 0.57 | 0.57   |
| correlated                                   |         | 0.57  | 0.57  | 0.57   | 0.57 | 0.57 | 0.57 | 0.76  | 0.76 | 0.76   |
| Radial resolution                            | 8       |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 | l ĭ l   | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| correlated                                   |         | 0.20  | 0.20  | 0.20   | 0.20 | 0.20 | 0.20 | 0.20  | 0.20 | 0.20   |
| Acollinearity bias                           | 8       |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| correlated                                   |         | 0.36  | 0.36  | 0.36   | 0.36 | 0.36 | 0.36 | 0.36  | 0.36 | 0.36   |
| Azimuthal resolution                         | 8       |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| correlated                                   |         | 0.04  | 0.04  | 0.04   | 0.04 | 0.04 | 0.04 | 0.04  | 0.04 | 0.04   |
| Clustering                                   | 8       |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| correlated                                   |         | 1.00  | 1.00  | 1.00   | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00   |
| $\Delta R - \Delta \Theta$ cut difference    | 9.3     |       |       |        |      |      |      |       |      |        |
| uncorrelated                                 |         | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| correlated                                   | a       | 0.00  | 0.00  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |
| M.C. statistics                              | Ø       | 0.00  | 0.07  | 0.00   | 0.00 | 0.10 | 0.05 | 0.00  | 0.04 | 0.00   |
| uncorrelated                                 |         | 0.29  | 0.27  | 0.29   | 0.33 | 0.13 | 0.25 | 0.36  | 0.34 | 0.32   |
| correlated                                   |         | 0.80  | 0.80  | 0.80   | 0.80 | 0.80 | 0.80 | 0.80  | 0.80 | 0.80   |
| 10tal Simulation ( $\Delta \epsilon_{sim}$ ) |         | 0.07  | 0.64  | 0.05   | 0.67 | 0.50 | 0.00 | 0.00  | 0.07 | 0.00   |
| uncorrelated                                 |         | 0.65  | 0.64  | 0.65   | 0.67 | 0.59 | 0.63 | 0.68  | 0.67 | 0.66   |
| correlated                                   |         | 2.32  | 2.32  | 2.32   | 2.32 | 2.32 | 2.32 | 2.37  | 2.37 | 2.37   |
| Grand Total                                  |         |       |       |        |      |      | 1    | 1.00  |      |        |
| uncorrelated                                 |         | 1.04  | 1.03  | 1.04   | 1.04 | 1.00 | 1.03 | 1.29  | 1.28 | 1.28   |
| correlated                                   |         | 3.17  | 3.17  | 3.17   | 3.17 | 3.17 | 3.17 | 3.21  | 3.21 | 3.21   |

# Radial Metrology :1.4"Inner Anchor" :1.4Z Metrology :0.4

| Energy Measurement : 1.8 |     |  |  |  |
|--------------------------|-----|--|--|--|
| Beam Parametrers :       | 0.6 |  |  |  |
|                          |     |  |  |  |

Clustering : 1.0

#### LumiCals at LEP and at FCC-ee



• LumiCals in same plane as forward ECAL at  $\sim$  2.5 m



- Last quadrupole at ~ 2.1 m
- Compensating solenoid down to 1.2 m (compensate for influence of detector B-field on crossing beam)
- LumiCals situated deep inside detector volume
- LumiCals centred around outgoing beam pipe

## LumiCal Challenges



- Geometrical constraints:
  - Stay away from beampipe
  - Stay away from tracker acceptance
  - □ Continuity of calorimetry below forward ECAL acceptance

• Precision constraints for 10<sup>-4</sup> measurement:

- **\square** Radial dimension of monitors to be controlled to  $\mathcal{O}(1 \ \mu m)$
- $\square$  Distance between two monitors to be controlled to 100  $\mu m$
- System of two monitors to be centred about collision point to precision of
  - $\boldsymbol{\ast}$  few mm in z
  - \* few tenths on mm in xy plane
- Well understood energy respons allowing good control of efficiency and background
  - $\star$  Dominant single uncertianty contribution for OPAL (1.8  $\times$  10^{-4})
- Pile up considerations (new wrt LEP):
  - Non-negligible probability to have two overlapping events (signal + signal/background) in the same bunch crossing

# **CDR LumiCal Design**

Design considerations:

Need to control geometry to precision of
 O(1 μm)

Keep geometry as simple as at all possible

Multilayer barrels with all layers having identical circular geometry

- ◆ 25 layer SiW sandwich
   □ 3.5 mm W (1 X<sub>0</sub>) + 1.0 mm gap for Si sensors
- Physical dimensions

□ Sensitive region: *r* = 55-115 mm

□ Region for "services": 115-145 mm

• Calorimeter front face at z = 1074 mm

Proposed segmentation

32x32 pads/layer (1.9 x 10-22 mm<sup>2</sup> pads)
 25,600 channels per LumiCal

♦ Weight

About 65 kg per LumiCal



# LumiCal Integration



#### **Condiderations and Concerns**

- Considerations for improved precision on radial coordinates:
  - Suggest to construct LumiCals as full barrels and not (as at LEP) as two half barrels
    - Avoid systematic from half-barrel separation
  - Fabricate each Si layer from one single Si crystal ??
    - Uncertainty on inner (and outer) radius would then basically be controlled by "Hamamatsu"
    - Can such Si sensors be produced?
    - What about thermal stability: cracks?
- Concerns:
  - By (ignorant?) design, LumiCal sits very close to incomming beam pipe
    - Only 1-2 mm clearance is that sufficient ?
  - □ For control of geometrical precision, temperature should be controlled to *O*(1 degree);
    - \* gradients should be minimized



# **Full Simulation Studies - Geometry**

- Monitors centred along outgoing beam line
  - 25 sandwich layers of
    - \* 3.5 mm W (1 X<sub>0</sub>)
    - ✤ 1.0 mm gaps with
      - 0.28 mm Kapton
      - 0.32 mm Si sensor
      - 0.40 mm Cu (?)
  - Additional 3.5 mm W layer at back

□ Extending along outgoing beam axis: 1074 -- 1186.5 mm

- Segmentation of Si sensors (increased φ segmentation by ×4 wrt CDR):
  - □ 32 pad rows along r (1.875 mm pads)
  - $\Box$  128 pad rows along  $\phi$  (CDR  $\times$  4)
  - □ 25 x 32 x 128 = 102400 channels per endcap

#### [Actually simulation saves SimHits.

Segmentation applied later in "analysis stage".]



230 mm

31.01.2024

#### **Response to Muons**

#### Single particle gun: 45.6 GeV muons



Mogens Dam / NBI Copenhagen

#### **Response to electrons**

#### Single particle gun: 45.6 GeV electrons





#### Longitudinal Development and Energy Response

#### Longitudinal shower development



#### Total deposited energy all layers



#### **Energy Response and Acceptance**



# **Beam Pipe and Cooling Manifold**



Mogens Dam / NBI Copenhagen

7th FCC Physics Workshop, Annecy

## First (erroneous!) results of beam pipe simulation



Mogens Dam / NBI Copenhagen

7th FCC Physics Workshop, Annecy

#### Influence of Beam Pipe (Correct placement)



# Influence of heavy Cooling Manifold



#### **Conclusion** About 2/3 of 45.6 GeV electrons produced in the range $\theta$ = 12-50 mrad give sizeable energy deposit in LumiCal due to shower

development in heavy cooling manifold

#### Rate estimate

- $\sigma_{BB}^{10-50 \text{ mrad}} = 900 \text{ nb}$
- $L = 1.8 \times 10^{36} \text{ cm}^{-2} \text{ s}^{-1}$ -  $\times 2/3$

#### $\Rightarrow$ <u>Rate $\approx$ 1.1 MHz $\Leftarrow$ </u>

- 25 times Bhabha rate
- One out of 45 BX

# Bhabha background scattered from Cooling Manifold



- Background ×25 higher rate than Bhabha signal
- Background energy 5-15% of Bhabha
- Background event energy can be spread over a sizeable number of cells
- Energy deposited primarily at low radius and/or early in calorimeter (first half)

# Bhabha and "Single Bhabha" rates



#### Rule of thumb:

- For an energy cut,  $E_{DEP} > 0.1 * E_{BEAM}$ , single Bhabha rate  $\approx$  Bhabha rate

# **LumiCal Spatial Resolution**

- Concentrate at this time only on the radial coordinate
- ◆ Quote everywhere resolution at a z reference plane corresponding to the 7<sup>th</sup> Si layer (Layer 6)
   □ z = 1104.91 mm
- General philosophy:
  - a. Simply use the centre-coordinate of the Si pad with maximum deposited energy as estimator in a given plane
  - b. Optionally correct this r-estimator, r<sub>i</sub> for radial pad i, with the correction function



# Spatial Resolution – Use Layer 6 only





$$\delta r_i = \frac{E_{i+1} - E_{i-1}}{E_{i+1} + E_i + E_{i-1}} \times w,$$



Average resolution:

- 546 μm
- 259 μm



Width of overlap region gives **resolution at boundary**. From fit of function:

$$\frac{1}{2}\left(1 + \operatorname{Erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right)$$

 $\sigma = 73 \,\mu m$ 

Note: 1875 μm / V12 = 541 μm

#### Spatial Resolution – Use Layers 2-9

Each of 8 layers provide an estimator of the r-coordinate at the reference z. Use the energy averaged of these 8 estimators as the overall estimator.

Since the geometry is non-pointing there are now 8 times as many pad boundaries to cross ⇒ Much better *average* resolution over surface



Mogens Dam / NBI Copenhagen

**Beware:** 

Over-/underflow

at the 10<sup>-4</sup> level

# Summary of LumiCal Rates

| Source |                                                                                          | Cross section / rate         | Energy                       |  |  |
|--------|------------------------------------------------------------------------------------------|------------------------------|------------------------------|--|--|
|        | $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$ (possibly valuable for alignment) | 10 Hz                        | Deposit: 0.25 GeV equivalent |  |  |
|        | Bhabha                                                                                   | 40 nb / 70 kHz               | 45.6 GeV                     |  |  |
|        | Single arm Bhabha (E>0.1 × $E_{BEAM}$ )                                                  | 40 nb / 70 kHz (single arm)  | 5 - 45.6 GeV (peaking low)   |  |  |
| _      | Beam-beam interaction e <sup>+</sup> e <sup>-</sup> pairs                                | 100 kHz (single arm)         | $\sim$ 5 GeV                 |  |  |
|        | Bhabha scattered from Manifold                                                           | 1100 kHz (mainly double arm) | o-7 GeV                      |  |  |



- Probability to have a second event ("pile-up") on top of a Bhabha event in same BX:
  - □ 70 kHz : 0.14 %

□ 1100 kHz : 2.2 %

- Would we have to integrate over several BX(?), numbers increase corresponsingly
- Important to minimize pile-up in order to undersand energy repsponse

"Keep it clean"

## First thoughts on local read-out

- For alignment purposes, we may wish to save muons
- Seems we cannot push out all active channels, i.e. all channels above mip threshold (60 keV deposited) in all bunch crossings
- Probably need some kind of local trigger, e.g.
  - **□** Analog sum in depth of e.g. 3 x 8-9 layers with some φ segmention
  - From fast shaped analog sum signals, take local decision per LumiCal on readout
    - Energy threshold for Bhabha
    - Depth requirement for muons
- Slower (more precise/less power hungry) shaping of the full set of channels
  - On local trigger accept, digitize and read out all channels (w. zero suppression)



## **Summary & Conclusions**

♦ Ambitious FCC-ee absolute normalisation goal of 10<sup>-4</sup>

Image: More than a factor 3 better than at LEP in less favourable conditions

- First results from full simulation of LumiCals
  - $\Box$  Maximum pad energy deposit from core of e.m. shower corresponds to  $\sim$  500 × mip signal
    - ✤ EM shower spreads over ~700 cells (out of 100k)
  - □ Energy resolution of 3.2% at 45.6 GeV for 25 sampling layers of 1 X<sub>0</sub> each
  - By correcting for lateral energy leakage, LumiCal acceptance can be 55-96 mrad corresponding to 28 nb for Bhabha scattering without comprimising energy resolution
    - $\bigstar \times 2$  larger cross section that CDR estimate
  - Heavy Cu beam-pipe cooling manifold causes large rate of leaked em showers from Bhabhas into LumiCal aceptance
    - \* 25 x Bhabha rate  $\Rightarrow$  2.2% pile-up rate inside same BX
  - $\square$  Spatial resolution of  ${\sim}75~\mu m$  on radius coordinate at border between two Si pads
    - \* By exploiting signals from several longitudunal samplings, resolution of same order over full calorimeter surface

# Thank you for your attention!

And a special thanks to Brieuc Francois for his untireable helpfulness with the software

# Extra material



#### Beam-background: e<sup>+</sup>e<sup>-</sup> pairs

250 GeV

4500 GeV

#### Study presented at 2018 FCC Week, Amsterdam

- e<sup>+</sup>e<sup>-</sup> pairs created in beam-beam interactions
   Dominant process at FCC-ee: Incoherent pair production
   Events studied/generated by GuineaPig program
- Example: Z-pole energy
  - □ 800 e<sup>±</sup> particles per BX (with E > 5 MeV)
  - **a** 500 GeV radiated in total per BX

#### **Basis for study:**

- events generated by GuineaPig program
- helix
   extrapolation to
   LumiCal face



Number of radiated particles and their total energy evolve strongly as function of √s
 Also energy per radiated particle increases ⇒ Focussing becomes realtively weaker
 At Z-pole energy, very low energy into LumiCal region
 At top-energy, energy into LumiCal region at the GeV level – study ongoing
 Energy # e<sup>±</sup> total # e<sup>±</sup> LumiCal Energy total Energy LumiCal





#### Conclusion:

- Very high per BX number of generated e<sup>+</sup>e<sup>-</sup> pairs and radiated energy
- Generally very low particle energies ⇒ strong focusing in detector B-field ⇒ rather low per BX energy hitting LumiCal : 60 MeV @ 91.2 GeV

At the time, full simulation showed 300 MeV impact on LumiCal @ 91.2 GeV. This was based on the wrong positioning of the LumiCals around the incoming beam axis



Now, full simulation reanalysis of original GuineaPig sample confirm 60 MeV number.

Conclusion: New study, reconfirms that beam-beam background is not an issue for LumiCals at FCC-ee

7th FCC Physics Workshop, Annecy

0.06 GeV

3.2 GeV