(Update on) Higgs self-coupling determination at the FCC-hh

Angela Taliercio, Birgit Stapf

Elisabetta Gallo, Kerstin Tackmann, Paola Mastrapasqua, Michele Selvaggi, Christophe Grojean

31.01.2024 | 7th FCC Physics Workshop | Annecy

Why do we want to measure the Higgs self-coupling?

Higgs self-coupling modifier: $\kappa_{\lambda} = \lambda^{meas} / \lambda^{SM}$

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

- Measuring the Higgs self-coupling allows us to gain insight into the nature of the Higgs potential and electroweak symmetry breaking → of our universe
 - It would be the first evidence of a particle interacting with itself

How can we measure the Higgs self-coupling (at FCC-hh)?

• Cross-section of Higgs pair production is proportional to κ_{λ}

How can we measure the Higgs self-coupling (at FCC-hh)?

• Cross-section of Higgs pair production is proportional to κ_{λ}

- But, there is destructive interference of triangle and box contributions
 - Tiny cross-section in the SM: $\sigma(ggHH) \sim O(1000)$ smaller than $\sigma(ggH)$
 - Experimentally very challenging !

CLUSTER OF EXCELLENCE

OUANTUM UNIVERSE

• At LHC we set limits: -0.4 < κ_{λ} < 6.3 (<u>ATLAS-HDBS-2022-03</u>)

- At LHC we set limits: $-0.4 < \kappa_{\lambda} < 6.3$ (<u>ATLAS-HDBS-2022-03</u>)
- Only at future colliders we will reach a precision measurement

- At LHC we set limits: $-0.4 < \kappa_{\lambda} < 6.3$ (<u>ATLAS-HDBS-2022-03</u>)
- Only at future colliders we will reach a precision measurement

Precision Higgs self-coupling measurement at FCC-hh

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

- FCC-hh: *pp*-collisions at 100 TeV,
 30 ab⁻¹ in ~25 years
 - Energy *and* precision frontier
 - Large cross-section **and** large data-set
 - 20 x precision of HL-LHC

Our work: Update of $\overline{b}byy$ and adding $\overline{b}bll + E_T^{miss}$

CLUSTER OF EXCELLENCE

OUANTUM UNIVERSE

Analyses performed within key4hep, on Delphes fast simulation with an optimistic detector scenario

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

UH H Universität Hamburg

byy analysis: Strategy overview

Pre-selected events

DNNs categorization to suppress the bkg

byy analysis: Strategy overview

$\overline{bbll} + E_T^{miss}$: Strategy overview

Signal signature

И

Η

- Cut-based event selection exploiting signal kinematics
 - Targeted suppression of $\overline{t}t$

background using

$$m_{lb}^{\text{reco}} = \min\left(\frac{m_{l_1b_1} + m_{l_2b_2}}{2}, \frac{m_{l_2b_1} + m_{l_1b_2}}{2}\right)$$

- <u>Stransverse mass</u> m_{T2} predicts invisible mass contribution
 - Capture the full *HH* decay
 - Fit to m_{T2} distribution in 5 categories depending on lepton

flavours and if Z(ll) decay

Lepton pair + E_{τ}^{Miss} + 2 *b*-jets

Leptons isolated from *b*-jets

Results

- Extracting Higgs self-coupling modifier κ_{λ}
 - Parametrized dependence of $\sigma(ggHH)$ on κ_{λ}
 - 3 different assumptions on

systematic uncertainties going

from optimistic to more

pessimistic (details in backup)

Baseline analysis for \overline{bbyy} \rightarrow Higher precision possible!

Summary & outlook

- We restarted the effort of FCC-hh Higgs self-coupling studies:
 - Using the common software tools, working on integration of our developments into the main repositories
- *Б*byy
 - Ultimate goal is to achieve 1% precision on the Higgs self-coupling
- $\overline{bbll} + E_T^{miss}$
 - No previous study of this channel

More details on both analyses in the parallel session

Systematic uncertainties

Source of uncertainty	Syst. 1	Syst. 2	Syst. 3	Applies to	Correlated	
Common systematics						
b-jet ID / b-jet	0.5%	1%	2%	Signals, MC bkgs.	1	
Luminosity	0.5%	1%	2%	Signals, MC bkgs.	1	
Signal cross-section	0.5%	1%	1.5%	Signals, MC bkgs.	\checkmark	
$b\bar{b}\gamma\gamma$ systematics						
γ ID / γ	0.5%	1%	2%	Signals, MC bkgs.	×	
$b\bar{b}\ell\ell + E_{\rm T}^{\rm miss}$ systematics						
Lepton ID / lepton	0.5%	1%	2%	Signals, MC bkgs.	×	
Data-driven bkg. est.		1%	1%	V + jets	×	
Data-driven bkg. est.	-	-	1%	$t\overline{t}$	×	

- Following previous di-Higgs studies@FCC-hh
- Applied as rate systematics only, no shape effect

Previous projections for *bbWW* @ FCC-hh

- *bbWW(2jlv)* studied using BDT, with similar input variables as used here
- Achieved 40% precision (@68% CL) on κ

Experiment	95% CL limit	Reference	Best case scenarios for Future Colliders			
ATLAS - HH -0.6 < κ_{λ} < 6.6	ATLAS-HDBS-2022	Experiment	$oldsymbol{\delta}\kappa_{\lambda}^{}$ (68% CL)	Reference		
		ILC (1 TeV)	10%	<u>arXiv:2203.07622</u> <u>v2</u>		
CMS	-12 < r < 65	<u>Nature 607 (2022)</u> <u>60</u>	CLIC (3 TeV)	9%	arXiv:1812.01644 <u>v1</u>	
- 1111	$-1.2 < \kappa_{\lambda} < 0.5$		FCC-ee	24%	<u>JHEP01(2020)139</u>	} Horb
	$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL)					J H only
HL-LHC ~50%	e.g. <u>ATL-PHYS-PUB-20</u> <u>22-005</u>	μ (10 TeV)	4%	<u>arXiv:2203.07261</u> <u>v2</u>	нн	
		FCC-hh	3%	<u>arXiv:2004.03505</u> <u>v2</u>		

Why di-Higgs at FCC-hh?

FCC-hh is the only perspective for a Higgs self-coupling precision measurement \leftrightarrow

Higgs self-coupling measurement is a clear benchmark channel for the FCC-hh

Common software stack for future facilities

All part of <u>key4hep</u> project: Consistent software stack for all future projects

- Fast, parametrized simulation in Delphes
- Using <u>EventProducer</u> framework (fork)
- Samples in <u>EDM4HEP</u> format

Analysis with common framework FCCAnalyses

- Currently on fork with some new additions
 - E.g. getting tagged jets from Delphes
- Plan to integrate into main repo

Common software stack for future facilities

💾 Universität Hamburg

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Fast, parametrized detector simulation with <u>Delphes</u> with <u>updated FCC-hh card</u>

 Very optimistic "ideal" scenario, implement fixes & new features

Example parametrization for muons

Higgs self-coupling projections for FCC-hh

	Combined precision
$oldsymbol{\delta\kappa}_{\lambda}$ (68% CL)	3.0% - 7.8%

ww 24.8% arXiv:1708.08249 gg ww gg ττ ZZ

Assuming SM Higgs BR BR HH→xxvv

(m_H = 125 GeV)

10-1

10-2

10-3

10-4

YΥ

FCC-hh potential well •

established in several channels

- Previously published combination included • bbyy, bbrr(hh+lh), 4b and bbZZ(4l)
- Considered three **different scenarios for** • **detector performance** and systematic uncertainties by reweighting from main detector scenario based on LHC performance & FCC-hh CDR

Di-Higgs cross-section dependance on κ_{λ} in *pp*-collisions

Higgs self-coupling @ ILC

- Two production modes:
 - Higgsstrahlung, peaks ~500 GeV
 - WW-fusion, above ~1 TeV
 - \rightarrow need runs at both energies for maximum κ_{λ} precision

- Studied dominant channels 4b and bbWW
- Advantage of *ee*-collider: *ZHH* cross-section increases with κ_{λ} , hence better constraints at values $\kappa_{\lambda} > 1$ than *pp*-colliders