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๏  Reaching the foreseen performance poses 
outstanding challenges on TH. Evolution in many 
areas is demanded‡  

➡ NB: cross-pollination across fields essential, global 
progress is required to match astonishing 
experimental precision 

2

  Theory challenges (this talk will focus only on some selected examples)

precision calcns  

(EW⊕QCD, QED ISR/FSR,  
NP corrections, high pert. orders, 

factorisations, …)

new observables  
(jet algorithms,  
flavour tagging,  

S/√B optimisation, 
study of radiation patterns,  
reduction of NP effects, …)

event generators 
(higher pert. accuracy,  
non-relativistic effects,  

heavy resonances, 
hadronisation & CR, …)

‡ I will focus on some of the next steps in QCD & some EW aspects  
(EW & MC generators discussed in depth in other talks at this workshop)
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  QCD studies in Z/γ* ⇾ jets
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  Physics at the Z pole (and above) [P. Janot’s talk @ CERN FC workshop 2022]

๏  Main challenges from EW aspects:  

➡ EWPO Z ⇾ qq+X @ 3 loops EW (4 loop arguably necessary)  

➡  Beam calibration (e+e- ⇾ e+e-, μ+μ-, γ γ @ NNLO EW) 

๏  But high potential for precision QCD studies:  

➡ αs from R𝓁 (4 loop QCD known, 1/Q6 hadronisation corrections) 

➡  Jets structure: spin correlations, fragmentation, jet observables 

➡  Study and modelling of non-perturbative effects 

➡  Heavy quarks (Q) studies (e.g. Rb, asymmetries, fragmentation functions) & flavour tagging (e.g. q/Q vs. g jets) 

➡  τ decays 

➡  Calibration/tuning of ML & MC tools (instrumental for higher-energy runs)



๏  Heavy quarks challenges: let’s consider AFB as an example 

➡  N3LO quite hard at the moment (QQg @ 2L, QQ @ 3L): possible workaround with series expansions (e.g. Rb currently 
known to N3LO up to O(mb4/Q4), “massification” of massless amps, …) or numerical methods  

➡  Explore fiducial selections to improve perturbative convergence (e.g. cut on acollinearity angle to suppress g ⇾ QQ 
reduces the size of QCD corrections/uncertainties)
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  An example: AFB
Alain Blondel1, Patrick Janot2: FCC-ee overview: new opportunities create new challenges 7

Table 3. Measurement of selected precision measurements at FCC-ee, compared with present precision. The systematic uncer-
tainties are initial estimates, aim is to improve down to statistical errors. This set of measurements, together with those of the
Higgs properties, achieves indirect sensitivity to new physics up to a scale ⇤ of 70TeV in a description with dim 6 operators,
and possibly much higher in specific new physics (non-decoupling) models.

Observable present FCC-ee FCC-ee Comment and
value ± error Stat. Syst. leading exp. error

mZ (keV) 91186700 ± 2200 4 100 From Z line shape scan
Beam energy calibration

�Z (keV) 2495200 ± 2300 4 25 From Z line shape scan
Beam energy calibration

sin2✓e↵W (⇥106) 231480 ± 160 2 2.4 from Aµµ
FB at Z peak

Beam energy calibration

1/↵QED(m
2
Z)(⇥103) 128952 ± 14 3 small from Aµµ

FB o↵ peak
QED&EW errors dominate

RZ
` (⇥103) 20767 ± 25 0.06 0.2-1 ratio of hadrons to leptons

acceptance for leptons

↵s(m
2
Z) (⇥104) 1196 ± 30 0.1 0.4-1.6 from RZ

` above

�0
had (⇥103) (nb) 41541 ± 37 0.1 4 peak hadronic cross section

luminosity measurement
N⌫(⇥103) 2996 ± 7 0.005 1 Z peak cross sections

Luminosity measurement

Rb (⇥106) 216290 ± 660 0.3 < 60 ratio of bb̄ to hadrons
stat. extrapol. from SLD

Ab
FB, 0 (⇥104) 992 ± 16 0.02 1-3 b-quark asymmetry at Z pole

from jet charge

Apol,⌧
FB (⇥104) 1498 ± 49 0.15 <2 ⌧ polarization asymmetry

⌧ decay physics
⌧ lifetime (fs) 290.3 ± 0.5 0.001 0.04 radial alignment
⌧ mass (MeV) 1776.86 ± 0.12 0.004 0.04 momentum scale
⌧ leptonic (µ⌫µ⌫⌧ ) B.R. (%) 17.38 ± 0.04 0.0001 0.003 e/µ/hadron separation
mW (MeV) 80350 ± 15 0.25 0.3 From WW threshold scan

Beam energy calibration
�W (MeV) 2085 ± 42 1.2 0.3 From WW threshold scan

Beam energy calibration

↵s(m
2
W)(⇥104) 1170 ± 420 3 small from RW

`

N⌫(⇥103) 2920 ± 50 0.8 small ratio of invis. to leptonic
in radiative Z returns

mtop (MeV/c2) 172740 ± 500 17 small From tt̄ threshold scan
QCD errors dominate

�top (MeV/c2) 1410 ± 190 45 small From tt̄ threshold scan
QCD errors dominate

�top/�
SM
top 1.2 ± 0.3 0.10 small From tt̄ threshold scan

QCD errors dominate
ttZ couplings ± 30% 0.5 – 1.5 % small From

p
s = 365GeV run

predictions. The e↵ects of a heavy Z0 gauge boson provide an illustrative example of complementarity, analysed in
Ref. [14] for a specific Higgs composite model. The precise measurements at and around the Z pole would be sensitive
to such a new object by Z/Z0 mixing or interference, while measurements at higher energies would display increasing
deviation from the SM in the dilepton, diquark or diboson channels. The combination of these two e↵ects would
provide a tell-tale signature and allow constraints on mass and couplings of this possible new object to be determined.

5 Opportunities: Flavours

A total of 7 ⇥ 1011 bb̄ pairs, available with a sample of 5 ⇥ 1012 Z decays promised by FCC-ee, provides many
opportunities in flavour physics. The precisions of CKM matrix element measurements expected from LHCb and
Belle2 will be challenged, and the search for unobserved phenomena will be pushed forward, such as CP-symmetry
breaking in the mixing of beautiful neutral mesons [14].
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Of this, the current QCD error is 

 

May become a bottleneck at FCC-ee

ΔAFB/AFB ∼ ± 0.003
With this new definition in hand we are now able to understand in more depth the

evolution of the asymmetry measurement as a function of the ⇠0 cut applied at the recon-
struction level. The central values of the measurement are obtained by scaling the ratio
RQCD effects at each point by the factor A0

FB = 0.10379± 0.00011(stat.), determined using
all the available statistics. Regarding uncertainties, three separate components are con-
sidered at each ⇠0 point: 1) the statistical uncertainty provided by the weighted average
of the 7 tune results, basically corresponding to 1/

p
7 times the uncertainties reported in

Table 7 for the Monash 2013 tune case; 2) the (symmetrized) envelope of the central results
obtained using different tunes; 3) a theoretical uncertainty equivalent to a 10% relative
uncertainty on the correction factor C, consistent with the uncertainty assumed in LEP
measurements [1]. Central values and uncertainties are collected in Table 9, and depicted
in Figure 2. Results are also corrected for small biases due to the limited angular resolution
effects, as discussed in Section 8.

⇠0 cut Measured AFB �AFB(stat) �AFB(tune) �AFB(theo. QCD corr)
No cut 0.0998± 0.0004 0.00008 0.00014 0.00033

1.50 0.1003± 0.0003 0.00011 0.00014 0.00023

1.00 0.1011± 0.0002 0.00011 0.00010 0.00016

0.50 0.1023± 0.0002 0.00011 0.00010 0.00007

0.30 0.1030± 0.0002 0.00011 0.00010 0.00003

0.20 0.1033± 0.0001 0.00011 0.00005 0.00002

0.10 0.1035± 0.0002 0.00016 0.00005 0.00001

Table 9. Central values and components of the uncertainty in the measurement of the AFB

asymmetry with 7 ⇥ 107 e+e� ! bb(g) events at the Z pole, for different ⇠ < ⇠0 cuts at the
reconstructed level.

Changes in the central values of the asymmetry as a function of the acollinearity cut
can be largely explained by the different size of the theoretically expected QCD corrections
at each point. The uncertainty on these corrections is larger (�AFB(QCD corr) ⇡ 0.0003)
when no acollinearity cuts are applied. Pythia tune uncertainties seem to have a marginal
effect for ⇠0 < 0.5 (�AFB(tune) . 0.0001) and are relatively stable down to rather low
values of the acollinearity cut. Statistical uncertainties start to dominate for ⇠0 . 0.3, but
let us remind that the statistical uncertainty will not be a limiting factor at FCCee, where
⇡ 1012 Z decays should be available. We conclude that, for a real analysis of e+e� !

bb(g) events, a cut ⇠ < 0.2 � 0.3 is already optimal, with associated QCD systematics
�AFB(tune+QCD corr) . 0.0001.

Figure 2 also shows the generator-level reference values of the asymmetry with and
without QCD corrections, calculated in the absence of acollinearity cuts. Let us note again
that we only expect a qualitative agreement with the reference value with QCD corrections.
For instance, there are hidden implicit cuts on acollinearity at the selection level. We
consider reconstructed jets with a limited resolution parameter (0.4), but require at least
two tagged b-jets in the event. Even without any explicit cut, the double-tag requirement

– 13 –

Moderate cuts seem to reduce 
the QCD error by an order of 

magnitude

[Blondel, Janot 2021]

[Bernreuther et al. 2016]

[Alcaraz Mestre 2020]



๏  Significant improvement needed in FO QCD calculations 

➡  3 jets @ N3LO QCD: amplitudes in the making (planar limit), 
 but IR subtraction is an open challenge 
 
 
  
 
 

➡  4 jets @ NNLO QCD: likely within reach in next O(few) years 

๏  Advancements in resummed calcns in multi-jet observables (global & non-global) will be instrumental: 
crucial to explore new observable designs to optimise calculability and performance (e.g. small hadronization)
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  Z/γ* ⇾ (light) jets

N3LO : 𝒪(α3
s )

NNLO : 𝒪(α3
s )

NLO : 𝒪(α3
s )

NLO : 𝒪(α4
s )

NLO for 6 & 7 jets (lead . colour)

Current state of the art

[Abreu et al.2023]
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nar penta-box (PB) families, three non-planar hexa-box
(HB) families and two non-planar double-pentagon (DP)
families that we depict in fig. 1, as well as a factorizable
planar topology. The factorizable, PB and HB families
have already been studied in the literature [2, 6, 8–10].
Here we define the DP families. Integrals in these families
can generically be written as

I[~⌫] = e2✏�E

Z
dD`1
i⇡D/2

dD`2
i⇡D/2

⇢�⌫9
9 ⇢�⌫10

10 ⇢�⌫11
11

⇢⌫1
1 · · · ⇢⌫8

8

, (1)

where we set D = 4�2✏, and ~⌫ is a vector of integers with
the restriction that ⌫9, ⌫10, ⌫11  0. Explicit expressions
for the ⇢i are given in ancillary files [50].

There are six independent variables sij = (pi + pj)2,
which we choose to be

~s = {p2
1 , s12 , s23 , s34 , s45 , s15} . (2)

Together with the parity-odd object

tr5 = 4i"↵��� p↵1 p�2p�3p�4 , (3)

they fully specify a point in the five-particle phase space.
Singularities of Feynman integrals are located at zeroes
of certain determinants, see e.g. refs. [51–55]. Three cases
play a special role here: the three and five-point Gram
determinants

�3 = � det G(p1, p2 + p3) ,

�5 = det G(p1, p2, p3, p4) ,
(4)

where G(q1, . . . , qn) = 2{qi · qj}i,j2{1,...,n}, and the poly-
nomial [9]

⌃5 = (s12s15 � s12s23 � s15s45 + s34s45 + s23s34)
2

� 4s23s34s45(s34 � s12 � s15) .
(5)

While �5 = tr25, relating tr5 to
p

�5 precisely is a subtle
issue. We adopt the convention of ref. [9] to only use
p

�5 in the pure integrals’ definitions.
Fig. 1 shows a fixed ordering of the massless legs, but

we consider the set of integrals closed under all permu-
tations of these legs. While �5 is invariant under these
permutations, there are three di↵erent permutations of

�3, denoted �(k)
3 , and six di↵erent permutations of ⌃5,

denoted by ⌃(k)
5 . Expressions for the �(k)

3 , ⌃(k)
5 and �5

are given in ancillary files [50].

Analytic Di↵erential Equations

We follow refs. [3, 4, 6, 9], where analytic DEs [14–
18] in canonical form [19] are obtained from numerical
samples. We focus on the DPmz and DPzz families, for
which we obtain canonical DEs for the first time. Any
integral in the DPmz (DPzz) family can be written as a

1
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4
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3

`1`2
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5
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(b) PBzmz

2
1

5
3

4

`1`2

(c) PBzzz

1

54 2

3

`1`2
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FIG. 1: Two-loop five-point one-mass families. The
thick external line denotes the massive external leg.

linear combination of 142 (179) master integrals. The top
sectors, with 8 propagators and 9 master integrals each,
were previously unknown. All integration-by-parts (IBP)
reductions [56–58] are performed within FiniteFlow [59]
(interfaced to LiteRed [60, 61]), and checked with Kira
2.0 [62] and FIRE6 [63].

Let ~g⌧ denote a vector whose entries form a pure [13]
basis of master integrals for a family of integrals ⌧ . It
satisfies a DE in canonical form [19]

d~g⌧ = ✏M · ~g⌧ , M =
X

i

Mi d log Wi , (6)

where the Wi are the letters of the (symbol) alphabet [33]
associated with ~g⌧ . While the Wi are algebraic functions
of ~s, the matrices Mi are matrices of rational numbers.
Finding a pure basis is still the most challenging aspect in
obtaining DEs in canonical form. We construct educated
guesses for pure bases building on the ideas of refs. [4–
6, 9], and test candidate bases by evaluating their deriva-
tives at numerical points and verifying the factorization
of ✏. Once a pure basis is found, we follow the steps in
section 4 of ref. [6] to determine that the alphabet for the
DPmz and DPzz families is contained within the one ob-
tained in ref. [9]. DPmz and DPzz have 62 and 74 letters
respectively. As in ref. [6], we fit the matrices Mi from
numerical evaluations on a finite field. Our results for the
pure bases, the alphabet (closed under all permutations
of the massless legs), and the analytic DEs can be found
in ancillary files [50]. Some pure integrals were simplified
with ideas from ref. [64].

Construction of One-Mass Pentagon Functions

The (one-mass) pentagon functions are a basis of spe-
cial functions to express all one- and two-loop five-point
integrals with an external massive leg, up to the order
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are given in ancillary files [50].

Analytic Di↵erential Equations

We follow refs. [3, 4, 6, 9], where analytic DEs [14–
18] in canonical form [19] are obtained from numerical
samples. We focus on the DPmz and DPzz families, for
which we obtain canonical DEs for the first time. Any
integral in the DPmz (DPzz) family can be written as a
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FIG. 1: Two-loop five-point one-mass families. The
thick external line denotes the massive external leg.

linear combination of 142 (179) master integrals. The top
sectors, with 8 propagators and 9 master integrals each,
were previously unknown. All integration-by-parts (IBP)
reductions [56–58] are performed within FiniteFlow [59]
(interfaced to LiteRed [60, 61]), and checked with Kira
2.0 [62] and FIRE6 [63].

Let ~g⌧ denote a vector whose entries form a pure [13]
basis of master integrals for a family of integrals ⌧ . It
satisfies a DE in canonical form [19]

d~g⌧ = ✏M · ~g⌧ , M =
X

i

Mi d log Wi , (6)

where the Wi are the letters of the (symbol) alphabet [33]
associated with ~g⌧ . While the Wi are algebraic functions
of ~s, the matrices Mi are matrices of rational numbers.
Finding a pure basis is still the most challenging aspect in
obtaining DEs in canonical form. We construct educated
guesses for pure bases building on the ideas of refs. [4–
6, 9], and test candidate bases by evaluating their deriva-
tives at numerical points and verifying the factorization
of ✏. Once a pure basis is found, we follow the steps in
section 4 of ref. [6] to determine that the alphabet for the
DPmz and DPzz families is contained within the one ob-
tained in ref. [9]. DPmz and DPzz have 62 and 74 letters
respectively. As in ref. [6], we fit the matrices Mi from
numerical evaluations on a finite field. Our results for the
pure bases, the alphabet (closed under all permutations
of the massless legs), and the analytic DEs can be found
in ancillary files [50]. Some pure integrals were simplified
with ideas from ref. [64].

Construction of One-Mass Pentagon Functions

The (one-mass) pentagon functions are a basis of spe-
cial functions to express all one- and two-loop five-point
integrals with an external massive leg, up to the order

(a) N
3 (b) N

2
N f

(c) NN
2
f

Figure 1: Representative three-loop planar diagrams which contribute to the
three leading color layers.

In the following, we fix the renormalization scale in ⌦ as
µ2 = q

2. The full scale dependence can then be recovered
through

⌦(3)(µ) =
 

5
16
�3

0L(µ)3 + �0�1L(µ)2 +
1
2
�2L(µ)

!
⌦(0)

+

 
15
8
�2

0L(µ)2 +
3
2
�1L(µ)

!
⌦(1)

+
5
2
�0L(µ)⌦(2) +⌦(3) (13)

with L(µ) = log
⇣
µ2/q2

⌘
.

The helicity amplitudes for the decay of a Standard Model
vector boson V can finally be related to the helicity amplitudes
obtained above by dressing with the appropriate electroweak
couplings

M
V

�q2�3�l5
= �

i
p

4⇡↵s(4⇡↵) L
V

l5l6
L

V

q1q2

D(p
2
56,m

2
V

)

⇥ Ta

i j
M�q2�3�l5

, (14)

where p56 = p5 + p6, the vector boson propagator reads

D

⇣
q

2,m2
V

⌘
= q

2
� m

2
V
+ i�VmV (15)

and the couplings for the bosons V = Z,W±, �⇤ are

R
�
f1 f2
= L

�
f1 f2
= �e f1� f1 f2 , (16)

L
Z

f1 f2
=

I
f1
3 � sin2 ✓we f1

sin ✓w cos ✓w
� f1 f2 , (17)

L
W

f1 f2
=

✏ f1, f2
p

2 sin ✓w
, (18)

R
Z

f1 f2
= �

sin ✓we f1

cos ✓w
� f1 f2 , (19)

R
W

f1 f2
= 0 . (20)

In the formulas above, ↵ is the electroweak coupling constant,
✓w is the Weinberg angle, I3 = ±1/2 is the third component of
the weak isospin and the charges ei are measured in terms of
the fundamental electric charge e > 0. Moreover, ✏ f1, f2 = 1
if f1 , f2 but belonging to the same isospin doublet, and zero
otherwise.

In order to compute the (unrenormalized) corrections to the
helicity amplitude coe�cient, we use the same unified work-
flow as for the tree-level, one- and two-loop amplitudes for
Vqq̄g [22], whose agreement with older results in the litera-
ture up to the finite part in ✏ provides an additional check on
our method. In summary, the relevant three-loop diagrams
are generated using QGRAF [44] and every manipulation in-
cluding insertion of Feynman rules, evaluation of Dirac and
Lorentz algebra and application of the projectors are performed
in FORM [50]. Once the helicity projectors have been applied,
all Feynman diagrams are expressed in terms of scalar integrals,
which can be written in terms of a single planar auxiliary topol-
ogy of the form

In1,...,n15 = e
3�E✏

Z 3Y

i=1

d
d
ki

i⇡d/2
1

D
n1
1 ...D

n15
15

(21)

with �E = 0.5772 . . . the Euler constant and propagators

D1 = k1 D6 = k3 � p1 D11 = k2 � p123
D2 = k2 D7 = k1 � p12 D12 = k3 � p123
D3 = k3 D8 = k2 � p12 D13 = k1 � k2
D4 = k1 � p1 D9 = k3 � p12 D14 = k1 � k3
D5 = k2 � p1 D10 = k1 � p123 D15 = k2 � k3

with pi j(k) = pi + p j(+pk). The integrals can be reduced to a
set of master integrals using integration-by-parts (IBP) iden-
tities [12, 49]. For the actual reduction, we use the imple-
mentation of the Laporta algorithm [40] in the automated code
Kira2 [37, 41] and express all integrals directly in terms of the
canonical basis for the three-loop planar family defined in [6].
Here it was shown that, in line with the one- and two-loop re-
sults, the three-loop planar integrals can be evaluated to arbi-
trary orders in the dimensional regularization parameter ✏ in
terms of multiple polylogarithms (MPLs) [26, 32, 48, 51] with
alphabet {y, z, 1 � y, 1 � z, y + z, 1 � y � z}.

The amplitude before reduction can be expressed in terms of
95625 scalar integrals, which in turn are reduced to 291 canoni-
cal basis elements and their crossings. The size and complexity
of intermediate expressions makes the use of traditional meth-
ods for symbolic insertion of the IBP reduction into the unre-
duced amplitude highly non-trivial. Therefore, in view of the
expected increase in complexity of the subleading layers in the
color expansion (12), we also devised a hybrid method involv-
ing finite field reconstruction, in parallel to a standard fully an-
alytic approach.

In particular, in the standard approach, we produced the IBP
identities with Kira2 and used Mathematica and Fermat to in-
clude them into the unreduced amplitude and simplify the re-
sulting coe�cients. We then expanded the master integrals in
✏ and obtained the final expression for the amplitude in terms

3

[Gehrmann et al.2023]



๏  Better MC models/tuning 
➡  Span of c.o.m. energies crucial for tuning, 

 jointly w/ higher order PSMCs  
 [High-purity samples of g/q/Q jets beneficial] 

➡  Cross-benefit between stages of FCCee 
 (e.g. Z ⇾ jets useful for ZH, CR at WW ⇾ jets, …) 

๏  Observables with smaller sensitivity to soft physics 
➡  e.g. grooming, albeit unclear whether effective at FCC-ee 

 due to limited phase space 

๏  Factorisation theorems and data driven extraction 
➡  Constrain NP parameters/operators across energies  

 (use of lattice also shows promising prospects) 
➡  Idea to run below the Z peak might be beneficial 
➡  Further progress in analytic methods highly desirable

7

  Non-perturbative QCD effects: possible ways forward
[J. Chan et al. ’22-’23]

[Marzani et al.2019]
e.g. αS from SD thrust

dσ
d𝒪

(𝒪) ≃
dσpert.

d𝒪 (𝒪 − ζ(𝒪)α0(Λ)
Λ
Q )

e.g. GANs as hadronisation model

e.g. large-nF models



8

  WW threshold



Reaching precision of 0.3-0.5  MeV 
 (lep. channel) requires NNLO EW

๏   XS known at NLO (EW) + NNLO (unstable particles EFT). OK 
 for δmW ~ 5-6 MeV. Effect of selection cuts in EFT to be understood 

๏  Recent calculation of  terms ~ O(0.034%) 

๏  Can be further improved using higher-orders ISR (NLL and beyond)

𝒪(αsα)

9

  WW threshold scan and W mass and width

ΔMW

ΔΓW

[Denner, Dittmaier, Roth, Wieders ’05; Actis, Beneke, Falgari, Schwinn ’08]

[Azzurri ’21]

NB: no W BRs: ~0.04% in table units 
 at √s = 161 GeV

[Li et al.2024]

[Frixione’s talk]



10

  FCC-ee as a Higgs factory



๏  Example: total cross section will be measured with 0.2%-0.5% accuracy. Necessary TH for (EW) production: 
➡ e+e- ⇾ Z H (available), H ν ν (e+e-) @ 2 loops EW (beyond reach at the moment) 
➡ Mixed QCD⊗EW @ 2 loops under control 

๏  Wealth of data in hadronic decays relies on QCD input

11

  Theory challenges at the ZH threshold

Projected reduction of intrinsic TH uncertainties 
for total rates in line with what can be achieved 
with future calculations; improvement needed in 

parametric uncertainties

[Chen, Guan, He, Liu, Ma ’22; Freitas, Song ’21-’22]
[Gong et al. ‘17]

[Table from J.de Blas’ talk at FCC week 2023]

Current and future uncertainties in total Higgs decay rates 
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Figure 4: Exclusion limits based on soft-drop groomed fractional energy correlations (from left to right)
FC1.5, FC1, FC0.5.
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Figure 5: Exclusion limits based on fractional energy correlations (from left to right) FC1.5, FC1, FC0.5,
measured individually on the two hemispheres.

Finally, FC0.5 appears to not be sensitive to µqq̄ within the range we consider.

Including soft-drop grooming of the hemispheres does not result in any significant improvements, as shown
in Fig. 4, the equivalent of Fig. 3 but with grooming included. In fact, the limits worsen slightly, which
could to some extend have been anticipated, since there are competing e↵ects at work. Grooming will
remove some information from the radiation pattern, but on the other hand has the potential to reduce
the impact of hadronisation corrections and hence the associated systematic uncertainty. Apparently, this
reduction is not su�cient to compensate for the loss in information, at least with the grooming parameters
we have considered here. One could imagine that an optimisation of zcut and the inclusion of angular
dependence in the soft-drop condition could lead to more competitive results. In addition it is certainly
worth stressing that the combination of probable future refinements of the hadronisation models and the
drastically increased data set of a potential FCC-ee (1012 events vs 107 at LEP-I) will most likely significantly
reduce the uncertainty related to the modelling of the parton-to-hadron transition. To illustrate this, we
present in Appendix A Fig. 7 selected exclusion-limit plots for the scenario of negligible non-perturbative
uncertainties. As anticipated, the limits improve, resulting in µgg = 1 ± 0.05 and µqq̄ < 25 for plain FC1.5,
and µgg = 1 ± 0.06 and µqq̄ < 28 for its soft-drop groomed variant.

One of the major di↵erences of our procedures so far, compared to traditional tagging methods, is that we
e↵ectively tag any event as a whole. When individually tagging jets, or hemispheres for that matter, one
would want to include a requirement that both tags are compatible with the desired final state. To mimic
this, we consider a measurement of the fractional energy correlations but on each hemisphere separately.
We then derive exclusion limits based on the corresponding two-dimensional histograms. While we hope
to expose additional information in this way, it should be clear that this is a more involved observable
definition. In particular, joint resummed calculations of several observables are far less advanced than what
would be available for the distributions considered above. The resulting confidence levels can be found in
Fig. 5. They are somewhat improved compared to the baseline in Fig. 3. In particular, for FC1.5 we obtain
µgg = 1± 0.05 and µqq̄ < 21. This suggests that combining individual results from the two hemispheres into

7

๏  New opportunities in differential distributions: e.g. strange Yukawa/Higgs BRs from shapes 
➡  Progress in perturbative calcns ongoing (many subtleties); major obstacle is the precise assessment of hadronization

12

[Gao ’16]

e.g. H ⇾ qq BRs from event shapes
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Finally, FC0.5 appears to not be sensitive to µqq̄ within the range we consider.

Including soft-drop grooming of the hemispheres does not result in any significant improvements, as shown
in Fig. 4, the equivalent of Fig. 3 but with grooming included. In fact, the limits worsen slightly, which
could to some extend have been anticipated, since there are competing e↵ects at work. Grooming will
remove some information from the radiation pattern, but on the other hand has the potential to reduce
the impact of hadronisation corrections and hence the associated systematic uncertainty. Apparently, this
reduction is not su�cient to compensate for the loss in information, at least with the grooming parameters
we have considered here. One could imagine that an optimisation of zcut and the inclusion of angular
dependence in the soft-drop condition could lead to more competitive results. In addition it is certainly
worth stressing that the combination of probable future refinements of the hadronisation models and the
drastically increased data set of a potential FCC-ee (1012 events vs 107 at LEP-I) will most likely significantly
reduce the uncertainty related to the modelling of the parton-to-hadron transition. To illustrate this, we
present in Appendix A Fig. 7 selected exclusion-limit plots for the scenario of negligible non-perturbative
uncertainties. As anticipated, the limits improve, resulting in µgg = 1 ± 0.05 and µqq̄ < 25 for plain FC1.5,
and µgg = 1 ± 0.06 and µqq̄ < 28 for its soft-drop groomed variant.

One of the major di↵erences of our procedures so far, compared to traditional tagging methods, is that we
e↵ectively tag any event as a whole. When individually tagging jets, or hemispheres for that matter, one
would want to include a requirement that both tags are compatible with the desired final state. To mimic
this, we consider a measurement of the fractional energy correlations but on each hemisphere separately.
We then derive exclusion limits based on the corresponding two-dimensional histograms. While we hope
to expose additional information in this way, it should be clear that this is a more involved observable
definition. In particular, joint resummed calculations of several observables are far less advanced than what
would be available for the distributions considered above. The resulting confidence levels can be found in
Fig. 5. They are somewhat improved compared to the baseline in Fig. 3. In particular, for FC1.5 we obtain
µgg = 1± 0.05 and µqq̄ < 21. This suggests that combining individual results from the two hemispheres into
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e.g. H ⇾ gg & H ⇾ qq BRs from fractional moments of EEC
[Knobbe, Krauss, Reichelt, Schumann ’23]

with Soft Drop

constraints from two  
independent hemispheres

  Hadronic Higgs decays
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Figure 4. Expected 95% CLs exclusion limit on r and the 1σ and 2σ fluctuations based on measure-
ments of different event shape observables and assuming a theory of the SM. Theoretical uncertainties
on the event shape distributions are not included.

larger than the qq̄ ones for a Higgs boson mass of 125 GeV. Thus, a small downward shift of

the gg induced cross sections comparing to experimental data, either due to the experimental

or theoretical uncertainties, can allow for a much larger light-quark Yukawa coupling.

We also comment on the comparison of our proposal with the possibility of using gluon/quark

jet discriminators. On the theory side, the event shape distributions can be calculated sys-

tematically in perturbative QCD, and the theoretical uncertainties are under control. Exper-

imentally, the hadronic even-shape observables have been studied extensively at LEP. The

experimental systematics are well understood. By comparing with the experimental results

on the αs(MZ) measurement [44, 45], we found the sensitivity obtained in this study is real-

istic. Even after all the experimental systematics are included, the expected exclusion limit

should not change greatly.

In summary, we have proposed a novel idea for measuring the light-quark Yukawa cou-

plings using hadronic event shape distributions in addition to the conventional measurement

of Higgs couplings at lepton colliders. We show that for a e+e− collider with a center-of-mass

energy of 250 GeV and an integrated luminosity of 5 ab−1 one can expect to exclude a decay

BR of 0.48% for the Higgs boson decay to qq̄, at 95% CLs, with q be any of the u, d, s quarks,

assuming a hypothesis of SM-like theory and only modifications to the Higgs boson couplings

to gluon and light quarks. That corresponds to an exclusion limit on a light-quark Yukawa

coupling of about 9% of the strength of the bottom quark coupling in the SM.
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  tt threshold scan



๏  Huge potential from threshold scan: up to per-mille accuracy on cross section & asymmetries 

๏  Access to top mass and width, as well as strong coupling and top Yukawa coupling 

๏  e.g. projected exp. target for top mass δmt ~ 20 MeV

14

  Top physics

Great challenge for theory to match 
this precision; 

intrinsic (e.g. higher order) & parametric (e.g. 
strong coupling from Z pole) uncertainties

[Plot from F.Simon’s talk @ CERN FC workshop 2022]



๏  PNRQCD predictions known to N3LO (also including EW+non-resonant effects @ NNLO) 

๏  Uncertainty in top mass (potential subtracted) δmt ~ 40 MeV. Towards exp. target (20 MeV): 

➡  Some improvements will come from matching  
  of N3LO+NNLL (ingredients available) 

➡  Needs NLL ISR (possibly including soft modes) 

➡  Ultimately might require N4LO in PNRQCD needed  
 (currently out of reach) 

๏  Continuum regime: recent calculation of full  
 N3LO QCD (reaching ~0.1-0.5% QCD errors)

15

  Top physics: theory for threshold scan

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser ’15]

[Beneke, Maier, Piclum, Rauh ’15] 
[Beneke, Maier, Rauh, Ruiz-Femenia  ’17]

[Chen, Guan, He, Liu, Ma ’22]



๏  Astounding physics programme at FCCee, drastic reduction of experimental uncertainties: theory 
precision likely to be among the main bottlenecks 

๏  Many (if not all) areas of theory calculations need to be involved (fixed order QCD + EW, resummations in 
QCD & QED, effective field theories, non-perturbative QCD, event generators, new observables,…) 

➡ Many challenges are technical in nature: hard calculations, currently beyond reach but likely to become 
achievable with the evolution of the field in the coming decades, and substantial work 

➡ Also deep conceptual questions, which need significant breakthroughs to improve their understanding: 
e.g. non-perturbative QCD (hadronisation, CR), EFT calculations, high-order QCD+EW MCs currently a 
bottleneck in several studies 

➡ New opportunities from data-driven approaches, crucial to think of how to exploit it for modelling 
aspects and theory uncertainties (e.g. heavy flavour & gluon fragmentation, hadronization modelling, …) 

➡ Huge step forward demanded for MCs (QCD/EW, ISR, HO for jet processes, NR QCD, resonances)
16

  Concluding remarks


