

European Research Council

Established by the European Commission

(QCD) Theory Challenges at FCC-ee Pier Monni (CERN)

7th FCC Physics Workshop – 1 February 2024

Theory challenges (this talk will focus only on some selected examples)

(higher pert. accuracy, non-relativistic effects, heavy resonances, hadronisation & CR, ...)

new observables

(jet algorithms, flavour tagging, S/\sqrt{B} optimisation, study of radiation patterns, reduction of NP effects, ...)

precision calc^{ns}

 $(EW \oplus QCD, QED |SR/FSR,$ NP corrections, high pert. orders, factorisations, ...)

- Reaching the foreseen performance poses outstanding challenges on TH. Evolution in many areas is demanded[‡]
- NB: cross-pollination across fields essential, global progress is required to match astonishing experimental precision

[‡] I will focus on some of the next steps in QCD & some EW aspects (EW & MC generators discussed in depth in other talks at this workshop)

QCD studies in $Z/\gamma^* \rightarrow jets$

Physics at the Z pole (and above)

- Main challenges from EW aspects:
- EWPO Z -> qq+X @ 3 loops EW (4 loop arguably necess
- Beam calibration ($e^+e^- \rightarrow e^+e^-$, $\mu^+\mu^-$, $\gamma \in \mathbb{Q}$ NNLO EW)
- But high potential for precision QCD studies:
- α_s from R_l (4 loop QCD known, 1/Q⁶ hadronisation correlation
- Jets structure: spin correlations, fragmentation, jet obs
- Study and modelling of non-perturbative effects
- τ decays
- Calibration/tuning of ML & MC tools (instrumental for higher-energy runs)

	[P. Janot's talk @ CERN FC workshop 202						
	Observables	Present value	FCC-ee current syst.				
	m _z (keV)	91187500 ± 2100	100				
odi y)	Γ _z (keV)	2495500 ± 2300 [*]	25				
	σ^{0}_{had} (pb)	41480.2 ± 32.5 [*]	4				
	N_{ν} (×10 ³) from σ_{had}	2996.3 ± 7.4	1				
ections)	Rℓ (×10³)	20766.6 ± 24.7	1				
servables	$lpha_{s}$ (m _Z) (×10 ⁴) from R _{ℓ}	1196 ± 30	1.5				
	R _b (×10 ⁶)	216290 ± 660	?				

- Heavy quarks (Q) studies (e.g. R_b, asymmetries, fragmentation functions) & flavour tagging (e.g. q/Q vs. g jets)

An example: A_{FB}

• Heavy quarks challenges: let's consider A_{FB} as an example

Observable	present	FCC-ee	FCC-ee	
	value $\pm \text{ error}$	Stat.	Syst.	
$R_b (\times 10^6)$	216290 ± 660	0.3	< 60	
$A_{FB}^{b}, 0 \ (\times 10^{4})$	992 ± 16	0.02	1-3	b-

- known to N³LO up to O(m_b^4/Q^4), "massification" of massless amps, ...) or numerical methods
- reduces the size of QCD corrections/uncertainties)

Moderate cuts seem to reduce the QCD error by an order of magnitude

[Blondel, Janot 2021] Comment and leading exp. error ratio of $b\bar{b}$ to hadrons stat. extrapol. from SLD -quark asymmetry at Z pole from jet charge

[Bernreuther et al. 2016] Of this, the current QCD error is $\Delta A_{\rm FB}/A_{\rm FB} \sim \pm 0.003$ May become a bottleneck at FCC-ee

- N³LO quite hard at the moment (QQg @ 2L, QQ @ 3L): possible workaround with series expansions (e.g. R_b currently

- Explore fiducial selections to improve perturbative convergence (e.g. cut on acollinearity angle to suppress $g \rightarrow QQ$

$\xi_0 \mathrm{cut}$	Measured A_{FB}	$\Delta A_{FB}(\mathrm{stat})$	$\Delta A_{FB}(\text{tune})$	ΔA_{FB} (theo. QCD corr)
No cut	0.0998 ± 0.0004	0.00008	0.00014	0.00033
1.50	0.1003 ± 0.0003	0.00011	0.00014	0.00023
1.00	0.1011 ± 0.0002	0.00011	0.00010	0.00016
0.50	0.1023 ± 0.0002	0.00011	0.00010	0.00007
0.30	0.1030 ± 0.0002	0.00011	0.00010	0.00003
0.20	0.1033 ± 0.0001	0.00011	0.00005	0.00002
0.10	0.1035 ± 0.0002	0.00016	0.00005	0.00001

[Alcaraz Mestre 2020]

→ (light) jets

- but IR subtraction is an open challenge

Non-perturbative QCD effects: possible ways forward

WW threshold

WW threshold scan and W mass and width

 XS known at NLO (EW) + NNLO (unstable particles EFT). OK for $\delta m_W \sim 5-6$ MeV. Effect of selection cuts in EFT to be understood

[Denner, Dittmaier, Roth, Wieders '05; Actis, Beneke, Falgari, Schwinn '08]

$\sqrt{s} [{ m GeV}]$	Born	Born (ISR)	$\hat{\sigma}^{(3/2)}$		
158	61.67(2)	45.64(2)	49.19(2)	-0.001	
		[-26.0%]	[-20.2%]	[-0.0%]	[-
161	154.19(6)	108.60(4)	117.81(5)	0.147	
		[-29.6%]	[-23.6%]	[+1.0%]	[-
164	303.0(1)	219.7(1)	234.9(1)	0.811	
		[-27.5%]	[-22.5%]	[+2.7%]	[-
167	408.8(2)	310.2(1)	328.2(1)	1.287	
		[-24.1%]	[-19.7%]	[+3.1%]	[-
170	481.7(2)	378.4(2)	398.0(2)	1.577	
		[-21.4%]	[-17.4%]	[+3.3%]	[-

- Recent calculation of $\mathcal{O}(\alpha_{c}\alpha)$ terms ~ O(0.034%) [Li et al. 2024]
- Can be further improved using higher-orders ISR (NLL and beyond)

[Frixione's talk]

 $\Delta \sigma_{\rm WW}(T) < 0.8$ fb

NB: no W BRs: ~0.04% in table units at $\sqrt{s} = 161 \text{ GeV}$

FCC-ee as a Higgs factory

Theory challenges at the ZH threshold

- $e^+e^- \rightarrow Z H$ (available), H v v (e^+e^-) @ 2 loops EW (beyond reach at the moment)
- - [Gong et al. '17]
- Wealth of data in hadronic decays relies on QCD input

Current and future uncertainties in total Higgs decay rates

	Decay	c	urrent u	nc. $\delta\Gamma$ [%]	fı	uture un	nc. $\delta\Gamma$ [%	6]	
		Th_{Intr}	$h_{\mathrm{Par}}^{m_q}$	$\mathrm{Th}_{\mathrm{Par}}^{lpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$	$\mathrm{Th}_{\mathrm{Intr}}$	$\mathrm{Th}_{\mathrm{Par}}^{m_q}$	$\mathrm{Th}_{\mathrm{Par}}^{lpha_s}$	$\mathrm{Th}_{\mathrm{Par}}^{m_H}$	
	$H \rightarrow b \overline{b}$	< 0.4	1.4	0.4	_	0.2	0.6	< 0.1	_	
i	$H \to \tau^+ \tau^-$	< 0.3	-	_		< 0.1		_	_	Projected reduction of intrinsic TH uncertaint
	$H \to c \overline{c}$	< 0.4	4.0	0.4	_	0.2	1.0	< 0.1	—	for total rates in line with what can be achiev
-	$H \to \mu^+ \mu^-$	< 0.3	-	_	-	< 0.1	-	_	_	with future calculations, improvement needed
i	$H \to W^+ W^-$	0.5	-	_	2.6	0.3	-	_	0.1	with future calculations; improvement needed
	$H \to gg$	3.2	K 0.2	3.7	-	1.0		0.5	_	parametric uncertainties
	$H \to ZZ$	0.5	-	_	3.0	0.3	-	_	0.1	
	$H \to \gamma \gamma$	< 1.0	< 0.2	_		< 1.0	-	_	_	
	$H \to Z \gamma$	5.0	- 1	_	2.1	1.0	-	_	0.1	[Table from J. de Blas' talk at FCC week 2023]
•										

• Example: total cross section will be measured with 0.2%-0.5% accuracy. Necessary TH for (EW) production:

[Chen, Guan, He, Liu, Ma '22; Freitas, Song '21-'22]

Hadronic Higgs decays

- New opportunities in differential distributions: e.g. strange Yukawa/Higgs BR[®] from shapes

60

50

 $\mu_{q\overline{q}}$

e.g. $H \rightarrow gg \& H \rightarrow qq BRs$ from fractional moments of EEC

tt threshold scan

Top physics

- Huge potential from threshold scan: up to per-mille accuracy on cross section & asymmetries
- Access to top mass and width, as well as strong coupling and top Yukawa coupling
- e.g. projected exp. target for top mass $\delta m_t \sim 20 \text{ MeV}$

Great challenge for theory to match this precision; intrinsic (e.g. higher order) & parametric (e.g. strong coupling from Z pole) uncertainties

Top physics: theory for threshold scan

PNRQCD predictions known to N³LO (also including EW+non-resonant effects @ NNLO)

$$R \sim v \sum_{k} \left(\frac{\alpha_s}{v}\right)^k \cdot \left\{ \underbrace{1 \text{ (LO)}}_{k}; \underbrace{\alpha_s, v \text{ (NLO)}}_{k}; \underbrace{\alpha_s^2, \alpha_s v, v^2 \text{ (NNLO)}}_{k}; \underbrace{\alpha_s^3, \alpha_s^2 v, \alpha_s v^2, v^3 \text{ (N3LO)}}_{k}; \ldots \right\}$$

- Uncertainty in top mass (potential subtracted) $\delta m_t \sim 40$ MeV. Towards exp. target (20 MeV):
- Some improvements will come from matching of N³LO+NNLL (ingredients available)
- Needs NLL ISR (possibly including soft modes)
- Ultimately might require N4L0 in PNRQCD needed (currently out of reach)
- Continuum regime: recent calculation of full N³LO QCD (reaching ~0.1-0.5% QCD errors) [Chen, Guan, He, Liu, Ma '22]

[Beneke, Kiyo, Marquard, Penin, Piclum, Steinhauser '15]

Concluding remarks

- precision likely to be among the main bottlenecks
- achievable with the evolution of the field in the coming decades, and substantial work
- bottleneck in several studies

• Astounding physics programme at FCCee, drastic reduction of experimental uncertainties: theory

• Many (if not all) areas of theory calculations need to be involved (fixed order QCD + EW, resummations in QCD & QED, effective field theories, non-perturbative QCD, event generators, new observables,...)

- Many challenges are technical in nature: hard calculations, currently beyond reach but likely to become

- Also deep conceptual questions, which need significant breakthroughs to improve their understanding: e.g. non-perturbative QCD (hadronisation, CR), EFT calculations, high-order QCD+EW MCs currently a

New opportunities from data-driven approaches, crucial to think of how to exploit it for modelling aspects and theory uncertainties (e.g. heavy flavour & gluon fragmentation, hadronization modelling, ...)

- Huge step forward demanded for MCs (QCD/EW, ISR, HO for jet processes, NR QCD, resonances)

