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The role of H in searches for BSM
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>10 years after its discovery, the Higgs boson plays a fundamental role in searches for physics 
beyond the Standard Model 
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Very large physics program pursued by both ATLAS and CMS!

>10 years after its discovery, the Higgs boson plays a fundamental role in searches for physics 
beyond the Standard Model 
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Very large physics program pursued by both ATLAS and CMS!

>10 years after its discovery, the Higgs boson plays a fundamental role in searches for physics 
beyond the Standard Model 

H125

Today focus  
as asked by the organisers
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A light resonance X (mX < mH125) decaying to SM particles 

• X , X   

A heavy resonance X (mX > mH125) decaying to SM particles 

• X VV, X H125H125  

A heavy resonance X (mX > mH125) decaying to at least a new particle  

• X YH125, X ZA  

→γγ →ττ

→ →

→ →

All the analyses presented are using the LHC (full) Run2 dataset 
Experiments are not yet covering the whole matrix of final states  
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One of the flagship searches 

 CMS PAS HIG-20-002

As written in the paper :  
“In the case of the combined data set, one excess with 
approximately 2.9σ local (1.3σ global) significance is 
observed for a mass hypothesis of 95.4 GeV ”

References 19
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Figure 7: The observed local p-values for an additional SM-like Higgs boson as a function of
mH, from the analysis of the data from 2016, 2017, 2018, and their combination.
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One of the flagship searches 

 CMS PAS HIG-20-002

ATLAS-CONF-2023-035 

As written in the paper :  
“In the case of the combined data set, one excess with 
approximately 2.9σ local (1.3σ global) significance is 
observed for a mass hypothesis of 95.4 GeV ”

References 19

70 75 80 85 90 95 100 105 110
 (GeV)Hm

5−10

4−10

3−10

2−10

1−10

1

Lo
ca

l p
-v

al
ue

σ1 

σ2 

σ3 

σ4 

Observed 13 TeV (2016)

Observed 13 TeV (2017)

Observed 13 TeV (2018)

Observed 13 TeV (Run 2)

Preliminary CMS

γγ →H 

 (13 TeV)-1132.2 fb

Figure 7: The observed local p-values for an additional SM-like Higgs boson as a function of
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ATLAS search cannot confirm 
the CMS excess  
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 signal while  is profiled. ggϕ σ(bbϕ) As written in the paper :  
“Two excesses for  production with local p-values 
equivalent to about 3 standard deviations at mφ = 0.1 
and 1.2 TeV. Within the resolution of the reconstructed 
invariant mass of the  system, the excess at 100 GeV 
coincides with a similar excess observed in a previous 
search for low-mass resonances by the CMS 
Collaboration in the  final state at a mass of ≈95 GeV ”

ggϕ

ττ

γγ

• Cannot be combined with other final states  
w/o a signal hypothesis  

• ATLAS result  (PRL (2020) 051801) starts at 200 GeV 

JHEP 07 (2023) 073
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Heavy resonance: X  ZZ →

11

Eur. Phys. J. C 81 (2021) 332 

Two final states :  
Only “Narrow Width Approximation” hypothesis tested  
Two production mechanisms  : ggF production or VBF production 
Events categorised in ggF-enriched or VBF-enriched categories  
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Figure 2: Distributions of the four-lepton invariant mass <4✓ in the ✓
+
✓
�
✓
0+
✓
0� search for the ggF-MVA-high

categories (`+`�`+`� (a), 4+4�`+`� (b), and 4
+
4
�
4
+
4
� (c) final states), for the ggF-MVA-low category (d), and

for the VBF-MVA-enriched category (e). The backgrounds are determined from a combined likelihood fit to the
data under the background-only hypothesis. The simulated <� = 600 GeV signal is normalised to a cross section
corresponding to 50 (5) times the observed limit given in Section 9.1.1 for the ggF (VBF) production mode. The
error bars on the data points indicate the statistical uncertainty, while the systematic uncertainty in the prediction is
shown by the hatched band. The lower panels show the ratio of data to prediction. The red arrows indicate data
points that are outside the displayed range.

23

 [GeV]4lm

2−10

1−10

1

10

210

310

410

Ev
en

ts
 / 

30
 G

eV Data ZZ

+V , VVVtt tt+jets, Z

Uncertainty
50 x obs. limit

=600 GeVHmNWA,

ATLAS
-1 = 13 TeV, 139 fbs
-µ+µ-µ+µ→ ZZ →H 

ggF-MVA-high

200 400 600 800 1000 1200 1400 1600 1800 2000
 [GeV]4lm

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

(a)

 [GeV]4lm

2−10

1−10

1

10

210

310

410

Ev
en

ts
 / 

30
 G

eV Data ZZ

+V , VVVtt tt+jets, Z

Uncertainty
50 x obs. limit

=600 GeVHmNWA,

ATLAS
-1 = 13 TeV, 139 fbs
-µ+µ-e+e→ ZZ →H 

ggF-MVA-high

200 400 600 800 1000 1200 1400 1600 1800 2000
 [GeV]4lm

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

(b)

 [GeV]4lm

2−10

1−10

1

10

210

310

410

Ev
en

ts
 / 

30
 G

eV Data ZZ

+V , VVVtt tt+jets, Z

Uncertainty
50 x obs. limit

=600 GeVHmNWA,

ATLAS
-1 = 13 TeV, 139 fbs
-e+e-e+e→ ZZ →H 

ggF-MVA-high

200 400 600 800 1000 1200 1400 1600 1800 2000
 [GeV]4lm

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

(c)

 [GeV]4lm

2−10

1−10

1

10

210

310

410

Ev
en

ts
 / 

30
 G

eV Data ZZ

+V , VVVtt tt+jets, Z

Uncertainty
50 x obs. limit

=600 GeVHmNWA,

ATLAS
-1 = 13 TeV, 139 fbs

-l'+l'-l+l→ ZZ →H 
ggF-MVA-low

200 400 600 800 1000 1200 1400 1600 1800 2000
 [GeV]4lm

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

(d)

 [GeV]4lm

2−10

1−10

1

10

210

Ev
en

ts
 / 

30
 G

eV Data ZZ

+V , VVVtt tt+jets, Z

Uncertainty
5 x obs. limit

=600 GeVHmNWA,

ATLAS
-1 = 13 TeV, 139 fbs

-l'+l'-l+l→ ZZ →H 
VBF-MVA-enriched

200 400 600 800 1000 1200 1400 1600 1800 2000
 [GeV]4lm

0.6
0.8

1
1.2
1.4

D
at

a/
Pr

ed
.

(e)

Figure 2: Distributions of the four-lepton invariant mass <4✓ in the ✓
+
✓
�
✓
0+
✓
0� search for the ggF-MVA-high

categories (`+`�`+`� (a), 4+4�`+`� (b), and 4
+
4
�
4
+
4
� (c) final states), for the ggF-MVA-low category (d), and

for the VBF-MVA-enriched category (e). The backgrounds are determined from a combined likelihood fit to the
data under the background-only hypothesis. The simulated <� = 600 GeV signal is normalised to a cross section
corresponding to 50 (5) times the observed limit given in Section 9.1.1 for the ggF (VBF) production mode. The
error bars on the data points indicate the statistical uncertainty, while the systematic uncertainty in the prediction is
shown by the hatched band. The lower panels show the ratio of data to prediction. The red arrows indicate data
points that are outside the displayed range.
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Figure 2: Distributions of the four-lepton invariant mass <4✓ in the ✓
+
✓
�
✓
0+
✓
0� search for the ggF-MVA-high

categories (`+`�`+`� (a), 4+4�`+`� (b), and 4
+
4
�
4
+
4
� (c) final states), for the ggF-MVA-low category (d), and

for the VBF-MVA-enriched category (e). The backgrounds are determined from a combined likelihood fit to the
data under the background-only hypothesis. The simulated <� = 600 GeV signal is normalised to a cross section
corresponding to 50 (5) times the observed limit given in Section 9.1.1 for the ggF (VBF) production mode. The
error bars on the data points indicate the statistical uncertainty, while the systematic uncertainty in the prediction is
shown by the hatched band. The lower panels show the ratio of data to prediction. The red arrows indicate data
points that are outside the displayed range.
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Figure 4: The upper limits at 95% CL on the cross section times branching ratio as a function of the heavy
resonance mass <� for (a) the ggF production mode (fggF ⇥ ⌫(� ! //)) and (b) for the VBF production mode
(fVBF ⇥ ⌫(� ! //)) in the case of the NWA. The black line indicates the observed limit. The green and yellow
bands represent the ±1f and ±2f uncertainties in the expected limits. The dashed coloured lines indicate the
expected limits obtained from the individual searches.

to leptons and up- and down-type quarks in several ways. In the Type-I model, �2 couples to all quarks
and leptons, whereas for Type-II, �1 couples to down-type quarks and leptons and �2 couples to up-type
quarks. The ‘lepton-specific’ model is similar to Type-I except for the fact that the leptons couple to �1,
instead of �2; the ‘flipped’ model is similar to Type-II except that the leptons couple to �2, instead of
�1. In all these models, the coupling of the heavier CP-even Higgs boson to vector bosons is proportional
to cos(V � U). In the limit cos(V � U) ! 0, the light CP-even Higgs boson is indistinguishable from
a SM Higgs boson with the same mass. In the context of � ! // decays there is no direct coupling
of the Higgs boson to leptons, so only the Type-I and II interpretations are presented. In addition, our
interpretations assume other Higgs bosons are heavy enough so that the heavy CP-even Higgs boson will
not decay to them.

Figure 6 shows exclusion limits in the tan V versus cos(V � U) plane for Type-I and Type-II 2HDMs,
for a heavy Higgs boson with mass <� = 220 GeV. This <� value is chosen so that the assumption
of a narrow Higgs boson is valid over most of the parameter space, and the experimental sensitivity is
maximal. At this low mass, only the ✓+✓�✓0+✓0� final state contributes to this result. The range of cos(V�U)

and tan V explored is limited to the region where the assumption of a heavy narrow Higgs boson with
negligible interference is valid. When calculating the limits at a given choice of cos(V � U) and tan V,
the relative rates of ggF and VBF production in the fit are set to the prediction of the 2HDM for that
parameter choice. Figure 7 shows exclusion limits as a function of the heavy Higgs boson mass <� and
the parameter tan V for cos(V � U) = �0.1, which is chosen so that the light Higgs boson properties are
still compatible with the recent measurements of the SM Higgs boson properties [99]. The white regions
in the exclusion plots indicate regions of parameter space which are not excluded by the present analysis.
In these regions the cross section predicted by the 2HDM is below the observed cross-section limit. In
comparison with the previous publication, the excluded regions are significantly expanded. For example,
in the tan V versus <� plane for the Type-II 2HDM the excluded region in tan V is more than 60% larger
for 200 < <� < 400 GeV.
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As written in the paper :  
“For the ggF production, the maximum deviation is for a signal mass hypothesis around 240 GeV, 
with a local (global) significance of 2.0  (0.5 ). For the VBF production, the maximum deviation is for 
a signal mass hypothesis around 620 GeV, with a local (global) significance of 2.4  (0.9 )”

σ σ
σ σ

240 GeV 620 GeV
Driven by 4e and 4mu final states Driven by 2 events 



7th FCC Physics Workshop - Roberto Salerno - 

Heavy resonance: other ZZ analyses 

13

No excesses in CMS (2016-only/36 fb-1) result 
Three final states : ,  4ℓ, ℓνℓν 2ℓ2q
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• CMS full Run2 results not yet out  
• Necessity to cover the 3 final 

states (  could have competitive 
sensitivity of )
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As written in the paper :  
“The highest local(global) significance, 
3.80σ(2.60σ), is found for the fVBF=1 scenario 
and corresponds to a signal hypothesis with a 
mass of 650 GeV”
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(a) (b)

Figure 1: (a) Local ?-value and (b) observed and expected upper limits at the 95% CL on the resonant Higgs boson
pair production cross section as a function of the resonance mass <-. The symbol ⌘ denotes a SM Higgs boson with
a mass 125 GeV.

⌘⌘ production is assumed to come from � ! ⌘⌘ for this interpretation. The ⌘ boson is assumed to be
the Higgs boson observed at the LHC with <⌘ = 125 GeV. The other Higgs bosons (�, �, �±) are
assumed to be mass degenerate, i.e., <� = <� = <�±, and the Higgs potential parameter <2

12 is fixed to
<2

�
tan V/(1 + tan2 V), where tan V is the ratio of the vacuum expectation values of the two Higgs doublets.

No constraint is imposed on cos(V � U), where U is the mixing angle between the CP-even Higgs bosons.
It, along with tan V and <� , is taken as a free parameter. Widths and branching ratios are calculated using
the 2HDMC program [50]. The � boson gluon–gluon fusion production cross section calculation uses the
SusHi package [51, 52], which includes corrections up to next-to-next-to-leading order in UB [53–55],
massive quarks [56, 57] and electroweak corrections by light fermions [58, 59]. The procedure for the
theoretical calculations follows Ref. [60]. The upper limits on the Higgs boson pair production cross
section are interpreted as constraints on two benchmark planes: <�–tan V for given cos(V � U) values,
shown in Figures 2(a)–2(b), and cos(V � U)–<� for fixed tan V values, shown in Figures 2(c)–2(d). The
interpretation is given in the Type-I 2HDM in which gluon–gluon fusion is the dominant production
mechanism throughout the parameter space where the searches have sensitivity. The � boson has a finite
natural width in the 2HDM. This is taken into account by considering in the combination only channels for
which the experimental mass resolution is large in comparison to the � boson natural width. In particular,
the 11̄WW (11̄11̄ and 11̄g+g�) channel upper limits are valid for � boson natural widths ��/<� up to 2%
(5%). The results are sensitive to cos(V � U) values that are not probed by the SM Higgs boson coupling
measurements [61]. For example, the point tan V = 10, cos(V � U) = �0.1 is excluded at 95% CL for <�

values in the range 270–810 GeV, a region allowed by Higgs boson coupling measurements.

The MSSM has a Type-II 2HDM Higgs sector structure [62] and, therefore, includes the 2HDM parameters
discussed earlier. The resonant ⌘⌘ production is assumed to come from � ! ⌘⌘ for this interpretation.
Supersymmetry constrains the number of free parameters in the Higgs sector at lowest order to be two, taken
here as <� and tan V. Radiative corrections have a large impact on the MSSM and the limits are influenced
by how the supersymmetry parameters are chosen, with each choice defining a particular scenario. In this
Letter, the M125

⌘,EFT and M125
⌘,EFT( j̃) scenarios are used [63]. These scenarios have supersymmetry mass

parameters that are not related to the Higgs sector at a very high energy scale such that the low tan V

5

As written in the paper :  
“The largest deviation is observed at 1.1 TeV and corresponds to a 
local(global) significance of 3.3𝜎(2.1𝜎)”  

arXiv:2311.1595 

X H125H125 combination of three final states: , , → bbbb bbττ bbγγ
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Figure 1: Feynman diagram showing a tree-level gluon-gluon fusion production of a BSM res-
onance X decaying to a pair of spin-0 bosons (HH or HY), which then decay to the ggbb final
state.

assumed value of the Y boson mass mY. Events are selected using machine learning algorithms
to suppress background contributions. The signal is extracted from a two-dimensional (2D)
maximum likelihood fit spanning the (mgg ,mjj) plane.

This paper is organized as follows: Section 2 provides a brief description of the CMS detector
followed by the details of the data and simulated event samples in Section 3. The analysis strat-
egy is discussed in Section 4, including background rejection methods along with the signal
and background modeling studies. Section 5 details the systematic uncertainties. The results
are presented in Section 6, and the analysis is summarized in Section 7. Tabulated results are
provided in the HEPData record for this analysis [30].

2 The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diam-
eter, providing a magnetic field of 3.8 T. Within the solenoid volume, there is a silicon pixel
and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and
scintillator hadron calorimeter (HCAL), each composed of a barrel and two endcap sections.
Forward calorimeters extend the pseudorapidity h coverage provided by the barrel and endcap
detectors. Muons are measured in gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. A more detailed description of the CMS detector, together with a
definition of the coordinate system used and the relevant kinematic variables, can be found in
Ref. [31].

Events of interest are selected using a two-tiered trigger system [32]. The first level (L1), com-
posed of custom hardware processors, uses information from the calorimeters and muon de-
tectors to select events at a rate of around 100 kHz within a fixed latency of about 4 µs [33]. The
second level, known as the high-level trigger, consists of a farm of processors running a version
of the full event reconstruction software optimized for fast processing and reduces the event
rate to around 1 kHz before data storage [34].

The global event reconstruction, also called particle-flow (PF) event reconstruction [35], aims
to reconstruct and identify each individual particle in an event (PF candidates), with an op-
timized combination of all subdetector information. In this process, the identification of the
particle type (photon, electron, muon, charged or neutral hadron) plays an important role in
the determination of the particle direction and energy.

Photons are identified as ECAL energy clusters not linked to the extrapolation of any charged
particle trajectory to the ECAL. Electrons are identified as a primary charged particle track and
potentially many ECAL energy clusters corresponding to this track extrapolation to the ECAL

arXiv:2310.01643 

As written in the paper :  
“The largest excess of the observation over the estimated 
background occurs for mX = 650 GeV and mY = 90 GeV 
with a local(global) significance of 3.8σ(2.8σ).”  
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Figure 7: Expected and observed 95% CL exclusion limit on production cross section for pp !
X ! HY ! ggbb signal. The dashed and solid black lines represent expected and observed
limits, respectively. The green and yellow bands represent the ±1 and ±2 standard deviations
for the expected limit. The middle plot in the 3rd row shows the highest excess observed for
mX = 650 GeV and mY = 90 GeV.
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Figure 5: Invariant mass distributions mgg (left) and mjj (right) with the data events (black
markers), with eMX selection corresponding to an HH signal with mX = 400 GeV (upper panel),
and to an HY signal with mX = 650 GeV and mY = 90 GeV (lower panel). The distributions are
shown for the signal-dominated category (CAT 0). The red dashed line shows the sum of the
fitted signal and background events. The solid black line shows the total background com-
ponent by summing the resonant and nonresonant background contributions. The green and
yellow bands represent the ±1- and ±2-standard deviations which include the uncertainties in
fit to the background component. The lower panel in each plot shows the residual signal yield
after the background subtraction.

Appealing search for a next-to-minimal supersymmetric SM interpretation  

mbb - low resolution mH125/m  - high resolution γγ
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CMS have a similar search: X Y(bb)H125(ττ)  
No excess observed 
Missing mX = 650 GeV 
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Figure 5. Expected and observed 95% CL upper limits on σ B(H → h(ττ)hS(bb)) for all tested
values of mH and mhS

. The limits for each corresponding mass value have been scaled by orders of
ten as indicated in the annotations. Groups of hypothesis tests based on the same NN trainings for
classification are indicated by discontinuities in the limits, which are linearly connected otherwise
to improve the visibility of common trends.

8 Summary

A search for a heavy Higgs boson H decaying into the observed Higgs boson h with a mass of
125GeV and another Higgs boson hS has been presented. The h and hS bosons are required
to decay into a pair of tau leptons and a pair of b quarks, respectively. The search uses a
sample of proton-proton collisions collected with the CMS detector at a center-of-mass en-
ergy of 13TeV, corresponding to an integrated luminosity of 137 fb−1. Mass ranges of 240–
3000GeV for mH and 60–2800GeV for mhS

are explored in the search. No signal has been
observed. Model independent 95% confidence level upper limits on the product of the pro-
duction cross section and the branching fractions of the signal process are set with a sensi-
tivity ranging from 125 fb (for mH = 240GeV) to 2.7 fb (for mH = 1000GeV). These limits
have been compared to maximally allowed products of the production cross section and the
branching fractions of the signal process in the next-to-minimal supersymmetric extension
of the standard model. This is the first search for such a process carried out at the LHC.

– 24 –

Full range of possibilities need to be explored 

ATLAS does not have a corresponding search 
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the CP-even Higgs bosons. It is usually assumed that the ⌘ boson is the Higgs boson that was discovered at
the LHC and has <⌘ ' 125 GeV. In this scenario, ⌘ has the same couplings to fermions and vector bosons
as the SM Higgs boson at lowest order in the limit that cos(V � U) = 0, known as the alignment limit.

Precision electroweak measurements [13] suggest that the masses of two of the heavy Higgs bosons in the
2HDM are degenerate. This has motivated many LHC searches, such as for the � ! /⌘ process [14, 15],
where <� = <� is assumed when interpreting the results. The scenario <� < <� has strong motivation
from electroweak baryogenesis models [16–20]; in particular, <� > <� is favoured [17] for a strong
first-order phase transition to have occurred in the early universe. The � boson mass is also constrained to
be not far above 1 TeV [16, 21], whereas the ⌘ boson is required to have properties similar to those of a SM
Higgs boson and hence it is compatible with the Higgs boson that was observed at the LHC [17].

In such a scenario, the most promising experimental signature is an � boson produced either via gluon–gluon
fusion (ggF, Figure 1(a)) or in association with 1-quarks (bbA, Figure 1(b)), with a subsequent decay
into /�, which dominates in the region <� � <� & 250 GeV. The signature of the � ! /� process
has been sought at the LHC in final states where the / boson decays leptonically (/ ! ✓

+
✓
�) and the �

boson decays into 11̄, ,, or gg [22–24]. These final states, although very sensitive, cannot probe the
parameter space in which <� > 2<top, where the � ! CC̄ decay becomes dominant. This parameter space
was probed recently with � ! /� and � ! ⌘⌘ [25], but this decay chain is not sensitive in the alignment
limit.

A

H

Z

g

g

(a)

A

H

Z

b

b

g

g

(b)

Figure 1: Feynman diagrams for the ggF (a) and bbA (b) production modes. The searches presented in this paper
target final states in which the � boson decays into CC̄ or 11̄ and the / boson decays into ✓

+
✓
� or aā.

The first search presented in this paper aims to cover this unexplored phase space by searching for � ! /�

in the ✓
+
✓
�
CC̄ final state. Top-quark pairs in which one top-quark decays semileptonically and the other

decays hadronically are considered. This leads to a signature with three leptons (electrons or muons) and at
least four jets, two of which are expected to have originated from 1-quarks.

In addition, a search for � ! /� with the / boson decaying into neutrinos and the � boson decaying into
a pair of 1-quarks is performed. This constitutes the first search at the LHC for 11̄ resonances with a mass
up to 2 TeV produced in association with missing transverse momentum, and is expected to complement
the sensitivity of the ✓+✓�11̄ search [22] at high <�, due to the higher branching ratio of the / boson decay
into neutrinos [14]. Moreover, this search could also be reinterpreted in the context of hierarchical 2HDMs
with extra mediators coupling to dark matter [8], thus also complementing the existing searches [26] in the
high <� regime.

3

As written in the paper :  
“The observed exclusion limit for the 

 channel is smaller than the 
expected exclusion limit in the region 
around (mA,mH) = (650,450) GeV ”
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Figure 5: Expected (a,c) and observed (b,d) upper limits at 95% CL on f(66 ! �) ⇥ ⌫(� ! /�) ⇥ ⌫(� ! CC̄)

(a,b) and f(11̄�) ⇥ ⌫(� ! /�) ⇥ ⌫(� ! CC̄) (c,d) in the (<�,<� ) plane. The limits are shown for either tan V = 1
or tan V = 10 in ggF or bbA production, respectively. The tan V value is relevant only for the choice of � boson width.
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Figure 3: The distribution of the fit discriminant �< = <(✓
+
✓
�
CC̄) � <(CC̄) in the SR of the ✓

+
✓
�
CC̄ channel for the

<� = 450 GeV hypothesis (a). The distribution of the fit discriminant <T (+�) in the SR of the aā11̄ channel in
the 2-1-tag (b) and � 3-1-tag (c) region, for the <� = 300 GeV hypothesis. The background yields are obtained
from a background-only fit to data. Signal distributions corresponding to ggF or bbA production normalised to the
theory cross-section are shown for comparison. The data are represented as black points and the associated error bars
represent the statistical uncertainty. The background uncertainty (hashed band) shows the post-fit statistical and
systematic components added in quadrature. The quantity on the vertical axis is the number of events divided by the
bin width in GeV.

8.2 Interpretation in the context of 2HDM

The upper limits shown in Section 8.1 are interpreted in the context of the CP-conserving 2HDM. For
this interpretation, several assumptions are made to reduce the number of free parameters in the model.
The �

± bosons are assumed to have the same mass as the � boson, whereas <� < <� is assumed for the
masses of the � and � bosons. The 2HDM parameter <2

12 is fixed to <
2
�

tan V/(1 + tan2
V). The ⌘ boson

is assumed to have a mass of 125 GeV and its couplings to fermions and vector bosons are set to be the
same as those of the SM Higgs boson at lowest order by choosing cos(V � U) = 0. The widths of the � and
� bosons are taken from the predictions of the 2HDM. These assumptions leave three free parameters:
<�, <� and tan V. In addition, there are four possible arrangements of the Yukawa couplings, which are
known as type-I, type-II, lepton specific and flipped 2HDM. For the parameter space that is relevant for this
search, the widths of the � and � bosons differ very little across the different 2HDM types in comparison
with the experimental mass resolution. In the same parameter space, the � boson width is larger than the �
boson width, so the quoted limits from this search cannot be interpreted as limits for the � ! /� process.
The cross-sections for � boson production in the 2HDM are calculated with corrections up to NNLO in
QCD for ggF and bbA production in the five-flavour scheme as implemented in SusHi [119–122]. For
bbA production, a cross-section in the four-flavour scheme is also calculated as described in Refs. [123,
124] and the results are combined with the five-flavour scheme calculation following Ref. [125]. The
Higgs boson branching ratios are calculated using 2HDMC [126]. The procedure used to calculate the
cross-sections and branching ratios, as well as to choose the 2HDM parameter values, follows Ref. [87].

The upper limits are interpreted as constraints in the (<�,<�) plane for several tan V values. The widths
of the � and � bosons change as a function of tan V and these variations are taken into account when
calculating the constraints. The results are quoted only for cases in which the width of the � boson is no
more than 25% of <�. Figures 7(a) and 7(b) show the constraints from the ✓+✓�CC̄ channel for the type-I

18
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At the LHC, an active program is underway to search for additional particles as 
part of an extended Higgs sector. 

The selected collection of results presented today did not reveal any large excess but 
rather depicted a mixed scenario of deviations and and other results that dismiss them. 

A complete and coherent picture across experiments has not yet emerged. 
ATLAS misses some searches of CMS, and CMS misses some searches of ATLAS. 

Many Run2 analyses are still ongoing with a target for 
completion this year. 
Additionally we can count on the LHC Run3 being in full 
swing, with the HL-LHC just around the corner!


