Extended Higgs sector experimental status

Roberto Salerno

The role of H in searches for BSM

beyond the Standard Model

>10 years after its discovery, the Higgs boson plays a fundamental role in searches for physics

The role of H in searches for BSM

>10 years after its discovery, the Higgs boson plays a fundamental role in searches for physics beyond the Standard Model

Very large physics program pursued by both ATLAS and CMS!

invisible de

The role of H in searches for BSM

beyond the Standard Model

Very large physics program pursued by both ATLAS and CMS!

>10 years after its discovery, the Higgs boson plays a fundamental role in searches for physics

A light resonance X (m_X < m_{H125}) decaying to SM particles

• $X \rightarrow \gamma \gamma X \rightarrow \tau \tau$

A heavy resonance X ($m_X > m_{H125}$) decaying to SM particles

• $X \rightarrow VV, X \rightarrow H_{125}H_{125}$

• $X \rightarrow YH_{125}, X \rightarrow ZA$

Extended Higgs sector - 3 groups of searches

- A heavy resonance X ($m_X > m_{H125}$) decaying to at least a new particle

All the analyses presented are using the LHC (full) Run2 dataset Experiments are not yet covering the whole matrix of final states

One of the flagship searches

observed for a mass hypothesis of 95.4 GeV "

Light resonance

10⁻² 10^{-3} 80 70

TI AC Proliminary

alerno - 7

Light/Heavy resonance: $A/H \rightarrow \tau \tau$

4 ττ final states ($\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$) b-tag/no b-tag category

Low-mass analysis $m_{\phi} < 250 \text{ GeV}$

Fit transverse mass variable Few m_T categories

Light/Heavy resonance: $A/H \rightarrow \tau \tau$

4 ττ final states ($\tau_h \tau_h$, $\mu \tau_h$, $e \tau_h$, $e \mu$) b-tag/no b-tag category

Light/Heavy resonance: A/H $\rightarrow \tau \tau$

As written in the paper :

"Two excesses for $gg\phi$ production with local p-values equivalent to about 3 standard deviations at $m_{\Phi} = 0.1$ and 1.2 TeV. Within the resolution of the reconstructed invariant mass of the $\tau\tau$ system, the excess at 100 GeV coincides with a similar excess observed in a previous search for low-mass resonances by the CMS Collaboration in the $\gamma\gamma$ final state at a mass of \approx 95 GeV "

• Cannot be combined with other final states w/o a signal hypothesis • ATLAS result (PRL (2020) 051801) starts at 200 GeV

100 fb-1

^{Physics Workshop - Roberto Salerno - 11}

Heavy resonance: $X \rightarrow ZZ$

"For the ggF production, the maximum deviation is for a signal mass hypothesis around 240 GeV, with a local (global) significance of 2.0 σ (0.5 σ). For the VBF production, the maximum deviation is for a signal mass hypothesis around 620 GeV, with a local (global) significance of 2.4 σ (0.9 σ)"

Driven by 4e and 4mu final states

As written in the paper :

Heavy resonance: other ZZ analyses

No excesses in CMS (2016-only/36 fb⁻¹) result Three final states : 4ℓ , $\ell\nu\ell\nu$, $2\ell^2 q$

Deficits where ATLAS has excesses, observed ULs tighter

• CMS full Run2 results not yet out Necessity to cover the 3 final states ($2\ell^2 q$ could have competitive sensitivity of 4ℓ)

Heavy resonance: $X \rightarrow WW$

CMS has a broad deviation in WW $\rightarrow \ell \nu \ell \nu$, mostly in VBF

As written in the paper : "The <u>highest</u> local(global) significance, 3.80 σ (2.60 σ), is found for the f_{VBF} =1 scenario and corresponds to a signal hypothesis with a mass of 650 GeV"

ATLAS has an $e\nu\mu\nu$ result with no excess

VBF fraction fixed to 1 no ggF production

VBF production only

Heavy resonance: combination of HH

$X \rightarrow H_{125}H_{125}$ combination of three final states: *bbbb*, *bb* $\tau\tau$, *bb* $\gamma\gamma$

As written in the paper : "The largest deviation is observed at 1.1 TeV and corresponds to a local(global) significance of $3.3\sigma(2.1\sigma)''$

Heavy resonance: $X \rightarrow Y_{\mathbb{A}}^{\mathbb{A}}$

Appealing search for a next-to-minimal supersymmetric SM interpretation

As written in the paper : "The largest excess of the observation over the estimated background occurs for $m_X = 650$ GeV and $m_Y = 90$ GeV with a local(global) significance of $3.8\sigma(2.8\sigma)$."

CMS have a similar search: $X \rightarrow Y(bb)H_{125}(\tau\tau)$ No excess observed Missing $m_X = 650 \text{ GeV}$

ATLAS does not have a corresponding search

Full range of possibilities need to be explored

Heavy resonance: $X \rightarrow ZA$

As written in the paper : "The observed exclusion limit for the *lltt* channel is smaller than the expected exclusion limit in the region around (m_A,m_H) = (650,450) GeV "

Conclusions

part of an extended Higgs sector.

A complete and coherent picture across experiments has not yet emerged. ATLAS misses some searches of CMS, and CMS misses some searches of ATLAS.

Many Run2 analyses are still ongoing with a target for completion this year. Additionally we can count on the LHC Run3 being in full swing, with the HL-LHC just around the corner!

At the LHC, an active program is underway to search for additional particles as

- The selected collection of results presented today did not reveal any large excess but rather depicted a mixed scenario of deviations and and other results that dismiss them.

