

# Physics Performance Highlights

Michele Selvaggi (CERN)

FCC Physics Week - Annecy February 2nd, 2023

# A few general considerations

15 (20?) years of operations



Exquisite luminosity allows for ultimate precision:

- 100K Z bosons / second
  - LEP dataset in 1 minutes
- 10k W boson / hour
- 2k Higgs bosons / day
- 3k tops / day

# Physics landscape at the FCC-ee



### Detector requirements at the FCC-ee

Higgs factory

track momentum resolution (low  $X_0$ )

IP/vertex resolution for flavor tagging

PID capabilities for flavor tagging

jet energy/angular resolution (stochastic and noise) and PF **Flavor** "boosted" B/D/τ factory:

track momentum resolution (low  $X_0$ )

IP/vertex resolution

**PID** capabilities

Photon resolution, pi0 reconstruction **QCD - EWK** most precise SM test

acceptance/alignment knowledge to 10 µm

luminosity

**BSM** feebly interacting particles

Large decay volume

High radial segmentation - tracker - calorimetry - muon

> impact parameter resolution for large displacement

> > timing

triggerless

### Reconstruction and ID

#### Coccaro, Garcia







Likelihood K/n discriminant

Highlights from recent activities

# Luminosity/acceptance

- Precise knowledge of the **geometrical acceptance** required by
  - R<sup>z</sup>, measurement (as limiting systematics)
  - absolute luminosity measurement at Z pole, required by
    - peak Z cross section ( $\sigma_0$ )
- At LEP, via Bhabha scattering at low angle, here we require 10<sup>-5</sup> precision (for point-to-point), 10<sup>-4</sup> being absolute target
  - un-matched by theoretical calculations
  - use  $ee \rightarrow rr$  process as an alternative, rarer but cleaner
- To match stat. precision (2x10<sup>-5</sup>)
  - must know  $\Delta \theta_{min} \sim 10 \mu rad \sim \Delta r \sim 30 \mu m$ ,  $\Delta z \sim 80 \mu m$  at  $\theta = 20^{\circ}$  and z = 2.6m
    - challenging design requirement !!







Precision at the Z - Rb

### Rohrig, MS



- syst. budget ~ correlation
- same hemisphere events dominate



|                         | Luminous region                                 |
|-------------------------|-------------------------------------------------|
| Current syst. precision | $\sigma^{\text{tot.}}(R_b) = 6.4 \cdot 10^{-4}$ |
| 1 % syst. precision     | $\sigma^{\text{tot.}}(R_b) = 2.9 \cdot 10^{-5}$ |

#### < 10<sup>-4</sup> seems to be within reach, but 1% control on correlation must be proven

Monteil, Ruan



cb

- V<sub>cb</sub> could be measured with a precision 0.15%
- **10x improvement** w.r.t to current

#### assessing impact of tagging systematics



|                       |                         | conservative | baseline | optimal |
|-----------------------|-------------------------|--------------|----------|---------|
|                       | LCFIPlus                | 0.071        | 0.057    | 0.047   |
| $\nu\nu Hc\bar{c}$    | ParticleNet             | 0.045        | 0.042    | 0.038   |
|                       | LCFIPlus<br>ParticleNet | 1.58         | 1.38     | 1.26    |
|                       | LCFIPlus                | 0.0241       | 0.0133   | 0.0091  |
| $ V_{cb} $            | ParticleNet             | 0.0086       | 0.0076   | 0.0067  |
| 1) south - radional ( | LCFIPlus<br>ParticleNet | 2.80         | 1.75     | 1.36    |

Flavor

recast of LEP analysis

$$\mathrm{BR}(B_s\to\bar\nu\nu)<6\times10^{-4}$$

| Mode                                | $N_S$           | $N_B$            | $\epsilon^s$ | $\epsilon^{b\overline{b}}$ | $\epsilon^{c\overline{c}}$ | $\epsilon^{q\overline{q}}$ | S/B  | $\sqrt{S+B}/S$ |
|-------------------------------------|-----------------|------------------|--------------|----------------------------|----------------------------|----------------------------|------|----------------|
| $B^0 \to K^{*0} \nu \overline{\nu}$ | $231\mathrm{K}$ | $1.27\mathrm{M}$ | 3.7%         | $\mathcal{O}(10^{-7})$     | $\mathcal{O}(10^{-9})$     | $\mathcal{O}(10^{-9})$     | 0.17 | 0.53%          |
| $B^0_s \to \phi \nu \overline{\nu}$ | 61 K            | $0.48\mathrm{M}$ | 7.4%         | $\mathcal{O}(10^{-7})$     | $\mathcal{O}(10^{-9})$     | $\mathcal{O}(10^{-9})$     | 0.13 | 1.20%          |

Electron and Muon ID at low momenta PID in general





PID, PID, PID ...

# More flavour ..

5σ observation  $B^0 \rightarrow K^{*0} \tau \tau$ with 2 µm vertex resolution recision of BF measurement as function of the resolution SV and TV longitudinal smearing : 20  $\mu$ m 0.6 FCC IDEA baseline 30% better SH resolution + 50% reduced material budget in VXD layers  $\sigma_N/N$ 0.3 SV and TV transverse smearing in  $\mu m$ 

- minimisation of material budget
- beam pipe eventually becomes the asymptotic limitation

A good reconstruction of Ks decays up to large flight distance

- hence a large tracking volume
- excellent mass and vertex resolutions
- light tracker and highly performant vertex detector
- PID crucial for the Bs





# Mass with time-of-flight

### Polesello, Valle



- For a timing layer with  $\sigma(t)$  a few tens of ps, mass resolution at percent level for long enough path and high enough mass
- Timing resolution dominated by unknown time of primary vertex

# Higgs Hadronic Couplings (light +FCNCs)

### Can use up, down, strange, charm and bottom flavour categories to extract upper limits on:

0.8

0.6

- 0.4

- 0.2

- Light Yukawa: up and down
- FCNCs: bs, bd, cu, sd

H→XX Truth

|          | HDD  | Hec  | 455  | HOG I | cautau | HUU  | HOO  | HIDS | Hod  | HSO  | HCU  | HNNN . | WIL  |
|----------|------|------|------|-------|--------|------|------|------|------|------|------|--------|------|
| HZZ -    | 0.06 | 0.05 | 0.05 | 0.05  | 0.01   | 0.03 | 0.03 | 0.00 | 0.00 | 0.02 | 0.01 | 0.14   | 0.56 |
| HWW -    | 0.00 | 0.02 | 0.01 | 0.04  | 0.03   | 0.02 | 0.01 | 0.00 | 0.00 | 0.01 | 0.03 | 0.75   | 0.07 |
| Hcu -    | 0.00 | 0.04 | 0.01 | 0.01  | 0.00   | 0.02 | 0.01 | 0.00 | 0.01 | 0.02 | 0.83 | 0.03   | 0.00 |
| Hsd -    | 0.00 | 0.00 | 0.21 | 0.05  | 0.00   | 0.10 | 0.14 | 0.00 | 0.00 | 0.46 | 0.01 | 0.01   | 0.01 |
| Hbd -    | 0.00 | 0.00 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00 | 0.20 | 0.76 | 0.00 | 0.02 | 0.01   | 0.00 |
| Hbs -    | 0.00 | 0.00 | 0.00 | 0.00  | 0.00   | 0.00 | 0.00 | 0.79 | 0.17 | 0.00 | 0.01 | 0.01   | 0.00 |
| Hdd -    | 0.00 | 0.00 | 0.05 | 0.08  | 0.00   | 0.25 | 0.45 | 0.00 | 0.00 | 0.13 | 0.01 | 0.02   | 0.02 |
| Huu -    | 0.00 | 0.00 | 0.05 | 0.08  | 0.00   | 0.47 | 0.26 | 0.00 | 0.00 | 0.10 | 0.01 | 0.02   | 0.02 |
| tautau - | 0.00 | 0.00 | 0.00 | 0.00  | 0.99   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01   | 0.00 |
| Hgg -    | 0.02 | 0.02 | 0.04 | 0.75  | 0.00   | 0.04 | 0.04 | 0.00 | 0.00 | 0.03 | 0.01 | 0.03   | 0.03 |
| Hss -    | 0.00 | 0.00 | 0.72 | 0.05  | 0.00   | 0.03 | 0.03 | 0.00 | 0.00 | 0.13 | 0.01 | 0.01   | 0.02 |
| Hcc -    | 0.00 | 0.87 | 0.00 | 0.01  | 0.00   | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.07 | 0.02   | 0.02 |
| Hbb -    | 0.95 | 0.00 | 0.00 | 0.01  | 0.00   | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00   | 0.03 |

| Final state        | upper limit<br>BR(H→xx)<br>95% CL |
|--------------------|-----------------------------------|
| $H \to dd$         | 1.7e-03                           |
| $H \rightarrow uu$ | 1.8e-03                           |
| $H \rightarrow bd$ | 3.3e-04                           |
| $H \rightarrow bs$ | 4.5e-04                           |
| $H \rightarrow cu$ | 3.0e-04                           |
| $H \rightarrow sd$ | 9.5e-04                           |

# Reducing the Systematic Uncertainties

#### Eysermans

### Construct the cross-section ratio using $\sqrt{s}$ = 217 and 240 GeV $R = \frac{\sigma_{\rm ZH} \times \mathcal{B}(\rm Z \to ff) \times \mathcal{B}(\rm H \to X\overline{X})|_{\sqrt{s}=217 \,\rm GeV}}{\sigma_{\rm ZH} \times \mathcal{B}(\rm Z \to f\overline{f}) \times \mathcal{B}(\rm H \to X\overline{X})|_{\sqrt{s}=240 \,\rm GeV}} = \frac{\sigma_{\rm ZH}(\sqrt{s}=217 \,\rm GeV)}{\sigma_{\rm ZH}(\sqrt{s}=240 \,\rm GeV)}$ $\rightarrow$ Experimental and theory uncertainties cancel mostly 15 $\rightarrow$ Sensitivity reached ~ 5 MeV 10 **Uncertainty (MeV)** Run config 5 ab<sup>-1</sup> @ 217, 5 ab<sup>-1</sup> @ 240 5 MeV 214 216 10 ab<sup>-1</sup> @ 240 GeV 3 MeV

### Can provide independent measurement of Higgs mass w.r.t. recoil mass method

But need to perform the "real" analysis for realistic numbers



# Where are we today?

# Made a lot of progress over the past years, mainly focused at the 240 GeV threshold

### Missing elements for the Feasibility Study for next 1.5 years

- Higgs @ 240 GeV: WW, ZZ (expansion of H width efforts)
- Higgs @ 365 GeV: the total cross-section, couplings, width
- Tau physics
  - Higgs → tau tau can put unique detector requirements
    for tau ID and reconstruction
  - Synergies with Tau polarization at Z pole
- Others: angular analysis, differential measurements

### **Top activities**

- Threshold mass, width
- EW couplings ttZ, Vts, FCNCs

| Parameter      | FCC-ee CDR | FCCee today |
|----------------|------------|-------------|
| H→WW           | 1 %        | 2.0 %       |
| H→ZZ           | 3.6 %      | 4.6 %       |
| H→gg           | 1.6 %      | 0.78 %      |
| Н→үү           | 7.5 %      | 3.5 %       |
| Н→сс           | 1.8 %      | 1.6 %       |
| H→bb           | 0.25 %     | 0.18 %      |
| H→µµ           | 15.8 %     | 19.5 %      |
| Η→ττ           | 0.75 %     | 0.9%        |
| H→Zγ           |            |             |
| H→ss           | _          | 103 %       |
| Invisible      | < 0.25 %   | < 0.18 %    |
| m <sub>H</sub> | 5 MeV      | 4 MeV       |
| Гн             | 1 %        | 4%          |
| κ <sub>λ</sub> | 42 %       | 30%         |

# FCC-hh

### precision

| Coupling precision                       | 100 TeV CDR<br>baseline | 80 TeV | 120 TeV |  |
|------------------------------------------|-------------------------|--------|---------|--|
| δg <sub>Hγγ</sub> / g <sub>Hγγ</sub> (%) | 0.4                     | 0.4    | 0.4     |  |
| δg <sub>нµµ</sub> / g <sub>нµµ</sub> (%) | 0.65                    | 0.7    | 0.6     |  |
| δg <sub>HZγ</sub> / g <sub>HZγ</sub> (%) | 0.9                     | 1.0    | 0.8     |  |

### $\begin{array}{c} \mbox{ColliderReach ECM extrapolation of } 5\sigma \\ \mbox{30ab}^{-1} \mbox{ discovery reach} \end{array}$

|                       | 100 TeV | 80 TeV | l 20 TeV |
|-----------------------|---------|--------|----------|
| Q*                    | 40      | 33     | 46       |
| Z' <sub>TC2</sub> →tt | 23      | 20     | 26       |
| Z' <sub>ssm</sub> →tt | 18      | 15     | 20       |
| G <sub>RS</sub> →WW   | 22      | 19     | 25       |
| Z'ssm→II              | 43      | 36     | 50       |
| Z'ssm→TT              | 18      | 15     | 20       |

### Higgs self-coupling



|                                                 | Stat only | Syst 1 |
|-------------------------------------------------|-----------|--------|
| No assumption on $m_{\overline{bb}}$ resolution | 3.2%      | 3.6%   |
| 10 GeV $m_{ar{bb}}$ res                         | 2.5%      | 2.7%   |
| 5 GeV m <sub>ь́b</sub> res                      | 2.0%      | 2.3%   |
| З GeV m <sub>ь́b</sub> res                      | 1.8%      | 2.0%   |

improved bbyy

# Thank you

## FCC-ee conditions

| FCC-ee parameters     |                                                  | Z       | ww            | ZH    | ttbar   |
|-----------------------|--------------------------------------------------|---------|---------------|-------|---------|
| √s                    | GeV                                              | 88 - 94 | 157.2 - 162.5 | 240   | 350-365 |
| Inst. Lumi / IP       | 10 <sup>34</sup> cm <sup>2</sup> s <sup>-1</sup> | 182     | 19.4          | 7.3   | 1.33    |
| Integrated lumi / 4IP | ab⁻¹ / yr                                        | 87      | 9.3           | 3.5   | 0.65    |
| N bunches/beam        | -                                                | 10 000  | 880           | 248   | 36      |
| bunch spacing         | ns                                               | 30      | 340           | 1 200 | 8 400   |
| L*                    | m                                                | 2.2     | 2.2           | 2.2   | 2.2     |
| crossing angle        | mrad                                             | 30      | 30            | 30    | 30      |
| vertex size (x)       | μm                                               | 5.96    | 14.7          | 9.87  | 27.3    |
| vertex size (y)       | nm                                               | 23.8    | 46.5          | 25.4  | 48.8    |
| vertex size (z)       | mm                                               | 0.4     | 0.97          | 0.65  | 1.33    |
| vertex size (t)       | ps                                               | 36.3    | 18.9          | 14.1  | 6.5     |
| Beam energy spread    | %                                                | 0.132   | 0.154         | 0.185 | 0.221   |