



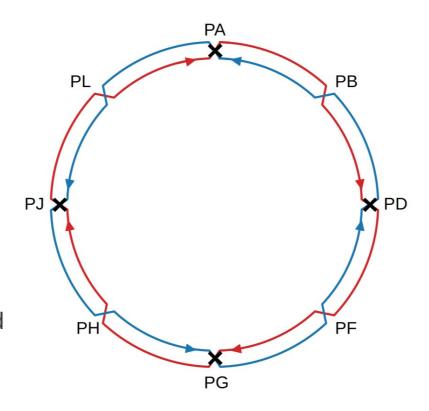
# **EPOL Summary**

Jacqueline Keintzel and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

7<sup>th</sup> FCC Physics Workshop

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch LAPP, Annecy, France 02 February 2024




FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.

### FCC-ee Overview

#### **Particle Physics:**

- Higgs and electro-weak factory
- 4 baseline beam energies and diverse particle physics program
  - 45.6 GeV: Z-pole
  - 80 GeV: W-pair-threshold
  - 120 GeV: ZH-production
  - 182.5 GeV: top-pair-threshold
- High number of statistics



#### **Accelerator Physics:**

- 4-fold super-symmetric layout
  - Up to 4 Interaction Points (IPs)
  - 1 RF-section per beam
  - 1 collimation section
  - 1 section for injection and dump
- Nanometer beam size at IPs.
- Strong synchrotron radiation

Precision particle physics experiments ( Center-of-mass energy determination



## **Expected Precision**

|     | Quantity                                                             | statistics | $\Delta E_{CMabs}$ | $\Delta E_{CMSyst-ptp}$ | calib. stats.                    | $\sigma E_{CM}$             |
|-----|----------------------------------------------------------------------|------------|--------------------|-------------------------|----------------------------------|-----------------------------|
|     |                                                                      |            | 100 keV            | 40 keV                  | $200  \mathrm{keV} / \sqrt(N^i)$ | $(84) \pm 0.05 \text{ MeV}$ |
| Z   | m <sub>Z</sub> (keV)                                                 | 4          | 100                | 28                      | 1                                | _                           |
|     | $\Gamma_{\rm Z}$ (keV)                                               | 4          | 2.5                | 22                      | 1                                | 10                          |
|     | $ sin^2 \theta_W^{\rm eff} 	imes 10^6 	ext{ from } A_{FB}^{\mu\mu} $ | 2          | _                  | 2.4                     | 0.1                              | _                           |
|     | $\frac{\Delta \alpha_{QED}(M_Z)}{\alpha_{QED}(M_Z)} \times 10^5$     | 3          | 0.1                | 0.9                     | _                                | 0.05                        |
|     | Further clarification ongoing                                        |            |                    | 300 keV                 | 150 keV                          |                             |
| WW≺ | m <sub>w</sub> (MeV)                                                 | 0.200      | (?)                | 75 keV?                 |                                  |                             |
|     | Γ <sub>w</sub> (MeV)                                                 |            |                    | (75?)                   | small                            | OK                          |

Large expected luminosity → huge statistics → small statistical error: 4 / 100 keV per Z / W - boson

Aim to achieve same order of magnitude for systematic errors → Scope of the **EPOL working group** 

EPOL: Energy calibration, polarization and monochromatization

arXiv:1909.12245



### How to?

Special mode: monochromatization

Detector input

Polarization build-up

Depolarization

Polarimetry

**ECM** 

- Resonances
- Wigglers
- Beam tests

- Resonant depolarization
- Free spin precession

- Polarimeter incl.
  - laser, Si-detectors
- e.g. EIC experience

- Systematic errrors
- Statistical errors
- Accurate models

## **Sessions Overview**

**Thursday 11:00 – 12:30** 

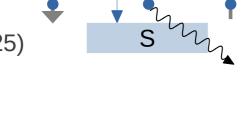
Prospects for polarization and energy measurements at CEPC; Speaker: Zhe Duan

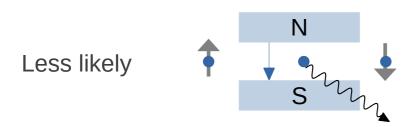
Progress with polarimeter studies and design Speaker: Aurélien Martens

Polarization studies at KARA Speaker: Jacqueline Keintzel

Orbit correction and polarization studies Speaker: Yi Wu

Thursday 17:45 - 18:45


Progress on energy measurements
Speaker: Ivan Koop


Progress on opposite sign dispersion and offset studies; Speaker: Alain Blondel

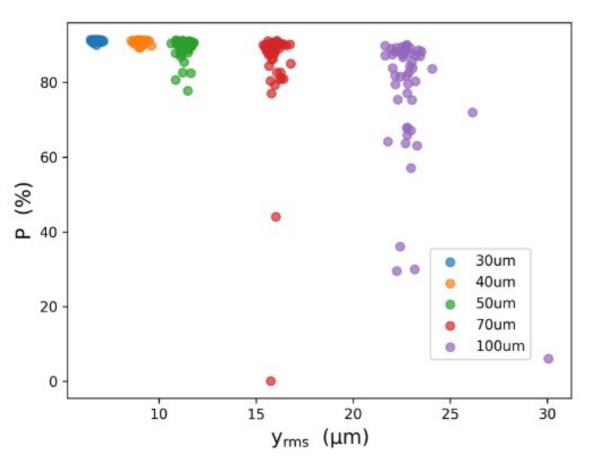
Progress on monochromatization studies Speaker: Angeles Faus-Golfe

## **Polarization Build-Up**








- Statistically every 10<sup>10th</sup> emitted synchrotron photon flips the spin
- Probability depends on the initial spin orientation
- Leads to a natural polarization build-up over time
- Orientation is anti-parallel to the guiding magnetic field
- Maximum theoretical polarization of 92.4 %
- Spin precesses through the lattice → Spin tune

$$v = a * \gamma_{Rel}$$

a ... gyro-magnetic anomaly y<sub>Rel</sub> ... Lorentz-factor

What are the advantages of wigglers or a dedicated polarization ring?

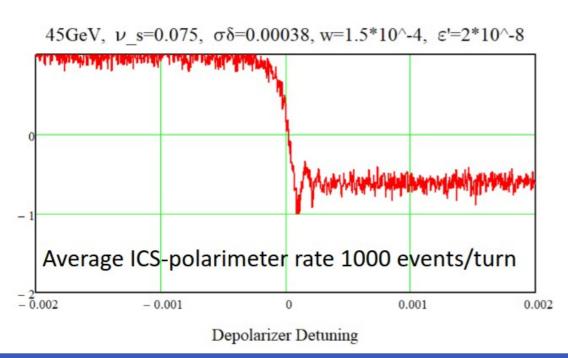
## Polarization and Misalignments



Orbit correction and polarization studies Speaker: Yi Wu

- Misalingment errors applied in the arcs and corrected
- Maximum polarization calculated
- Spread of max polarization significantly increased

- Polarization possibly improved by harmonic spin matching
- Shift of spin tune with misalignments to be evaluated


## **Energy Measurement Simulation**

• To control longitudinal polarization: continous operation on all colliding bunches → increased power

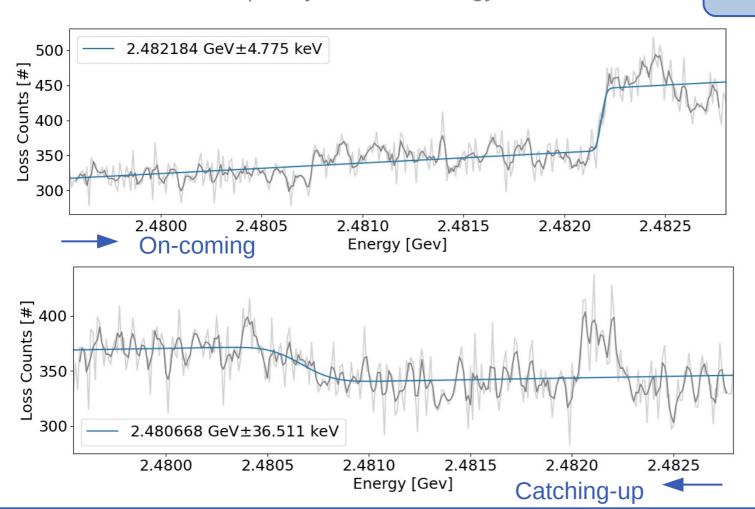
- Independent depolarizers per beam
- Transverse resonant depolarization time 5 10 min

Progress on energy measurements Speaker: Ivan Koop

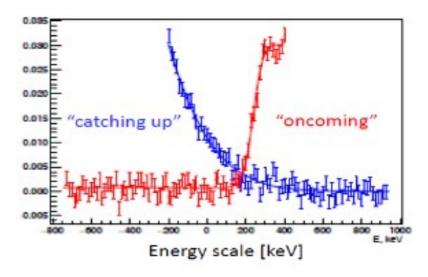
80 GeV,  $\nu$  s=0.075,  $\sigma\delta$ =0.00067, w=1.5\*10^-4,  $\varepsilon$ '=2\*10^-8



Polarization from Polarimeter -0.001-0.0020.001 0.002 Depolarizer Detuning




## Measuring Polarization at KARA

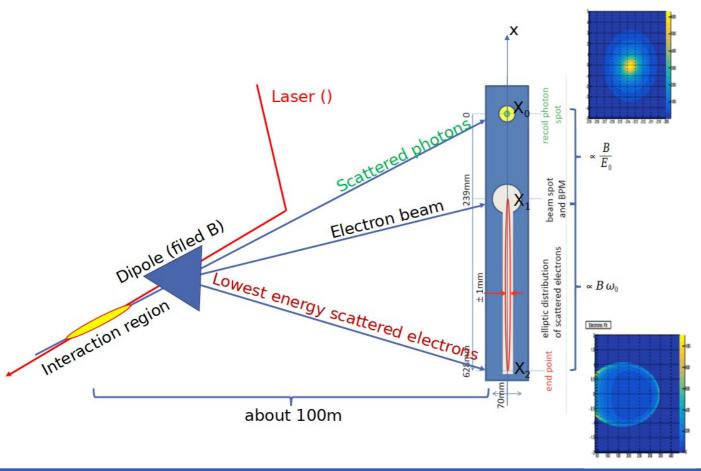

Excitation frequency 

→ Beam energy

Polarization studies at KARA Speaker: Jacqueline Keintzel



- Findings consistent with FCC simulations
- Suggests negative engergy drift




Courtesy: S. Nikitin, I. Koop



## **Polarimeter**

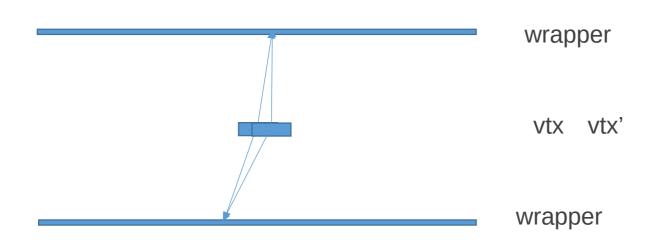
 3D polarimetry to measure transverse and longitudinal polarization

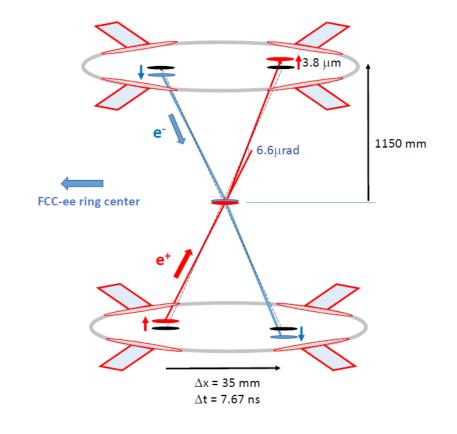


Progress with polarimeter studies and design Speaker: Aurélien Martens

$$\int B_x dl \ll rac{\sigma_y \gamma}{L_2} rac{mc}{q} pprox 1.1 imes 10^{-4} ext{ T.m} ext{ and}$$
  $\int B_z dl \ll rac{\sigma_y \gamma}{L_2 \kappa heta_0} rac{mc}{q} pprox 3.2 imes 10^{-2} ext{ T.m}.$ 

- Transition from conceptual design to definition of hardware specifications
  - Dipole field quality and alignment
  - Pixel size for photon and electron detector
  - Detector design started


Additional person power is joining project


## **ECM Energy Shifts**

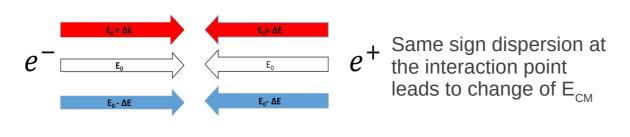
- Opposite sign dispersion and collision offsets modify  $\sqrt{s}$
- Collision offset could be measured with lumical BPM

Progress on opposite sign dispersion and offset studies; Speaker: Alain Blondel

Cosmic muons necessary to resolve weak modes –
 time needed to accumulate sufficiently large sample under evaluation

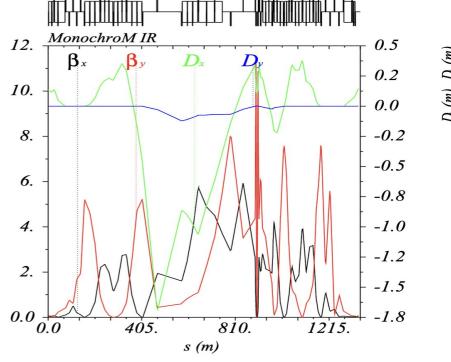





### Monochromatization

• 62.5 GeV beam energy → peak of Higgs-production

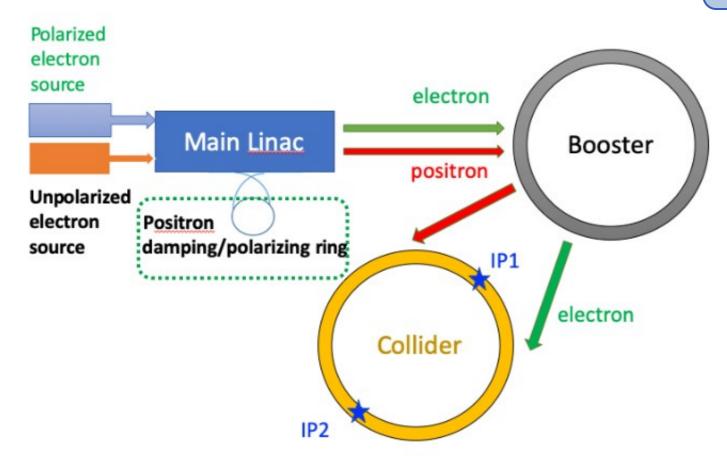
Progress on monochromatization studies Speaker: Angeles Faus-Golfe


- For minimization of collision energy spread —> monochromatization
- Trade-off between collision energy spread and luminosity production

#### **Introducing dispersion**






 $\beta_{*}(m), \beta_{*}(m) \quad [*10**(3)]$ 



4 MeV spread ↔ 18 x 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup>, possible optimization

### **CEPC Polarization Scheme**

Prospects for polarization and energy measurements at CEPC; Speaker: Zhe Duan



- Injection of polarized electrons and positrons in collider rings at Z and W
  - Longitudinal polarization for physics bunches
  - Transverse polarization for pilot bunches
  - More time for physics

Possibly also polarized beams at H

### Outlook

- Presently aimed to achieve 4 / 100 keV systematic uncertainty at the Z- / W- modes -> EPOL
- Important questions aimed to be investigated before the end of the feasibility study, for example:
  - Does the spin tune shift if misalingments and correction schemes are applied?
  - What are the systematics energy shifts between pilot bunches and colliding ones?
  - Could the requirements for the depolarizer be integrated into the feedback system?

•

#### **Regular EPOL meetings:**

indico.cern.ch/category/8678/ Typically every third Thursday 16:30-18:30

Any help is welcome!

#### **Mailing list:**

fcc-ee-PolarizationAndEnergyCalibration@cern.ch

#### **Self-subscription from:**

https://e-groups.cern.ch/e-groups/EgroupsSearch.do





### Thank you!

**EPOL Summary** 

#### Jacqueline Keintzel and Guy Wilkinson

On behalf of the FCC-ee EPOL working group

7<sup>th</sup> FCC Physics Workshop

jacqueline.keintzel@cern.ch guy.wilkinson@cern.ch LAPP, Annecy, France 02 February 2024



FCCIS – The Future Circular Collider Innovation Study. This INFRADEV Research and Innovation Action project receives funding from the European Union's H2020 Framework Programme under grant agreement no. 951754.