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Physics motivation

▶ Considerable interest in the flavour community in b→ sℓ+ℓ− and b → cℓ−ν
transitions

▶ b → sνν transitions are complementary probes (ℓ+ and ν share a weak doublet)

▶ SM predictions are clean:

▶ Dominant uncertainties from hadronic form-factors and CKM elements

▶ No long-distance contributions from (in)famous charm loops

▶ Sensitive to a variety of NP scenarios e.g. Z′, leptoquarks etc.
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L = −6.35(7) and Cij

R = 0 [1, 2, 3, 4]
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FCC-ee as a flavour factory

▶ FCC-ee is a dream environment for heavy flavour
▶ Get all the benefits of both Belle II and LHCb
▶ Provides a unique opportunity for semileptonic flavour physics

▶ The Monteil-Wilkinson tick-list [5]

▶ Tera-Z run at the Z0-pole:
▶ 6× 1012 Z0 (across 4 experiments)

Species (both flavours) B0 B+ B0
s Λ0

b B+
c cc τ−τ+

Yield (billions) 740 740 180 160 3.6 720 200

▶ Giga-W run at W+W− threshold:
▶ 2.4× 108 W± pairs (across 4 experiments)

▶ Do LEP in ONE MINUTE!
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Experimental state-of-the-art

▶ In the SM b → sνν BF predictions are O(10−5)
▶ Recently evidence at Belle II 3.5σ [6]
▶ 2.7σ enhancement w.r.t SM prediction

▶ From the underlying b → sνν̄ transition:

Decay B-factories FCC-ee Current Limit SM prediction

B+ → K+νν ✔ ✔ Seen (4.0± 0.5)× 10−6

B+ → K∗+νν ✔ ✔ < 4.0× 10−5 (9.8± 1.1)× 10−6

B0 → K0
Sνν ✔ ✔ < 2.6× 10−5 (3.7± 0.4)× 10−6

B0 → K∗0νν ✔ ✔ < 1.8× 10−5 (9.2± 1.0)× 10−6

B0
s → ϕνν ✗ ✔ < 5.4× 10−3 (9.9± 0.7)× 10−6

Λ0
b → Λ0νν ✗ ✔ – –

Λ0
b → Λ0νν ✗ ✔ – –

B+
c → D+

s νν ✗ ✔ – –

▶ Decays with intermediate vectors are consierably easier experimentally
▶ single track is hard, final state neutral needs good K0

S/ Λ0 reco

▶ Decays with intermediate scalars are cleaner for theory

▶ With 2 neutrinos in the final state, decays are (probably) impossible at the LHC
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Detector requirements for flavour

Tracking
▶ Good p resolution is required for most physics at FCC

▶ Ability to reconstruct down to low momentum important for flavour

Vertexing
▶ Essential for huge parts of flavour program

▶ Resolve TD oscillations of B0
s so σt ∼ 50 fs

▶ Semi-leptonic and decays to τ , σv ∼ 5µm for 3-track vertex

Calorimetry
▶ Low multiplicity allows study of flavour with neutrals

▶ Anything with π0 or γ incredibly challenging at LHCb
▶ Need performance maintained at low energy

Particle ID
▶ Vital for any heavy flavour program

▶ Need effective kaon-pion separation across wide range of momentum
▶ Non-signal momenta ∼ 10GeV/c, signal momenta ∼ 30GeV/c
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Studies of b → sνν at FCC-ee

▶ Published in JHEP last week! [7]
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Event topology

▶ Use the thrust axis for Z0 → qq to define event hemispheres

▶ Due to missing energy in the signal decay the two hemispheres have different energy
distributions

Plane normal to thrust axis 
defines the hemispheres
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Energy in each hemisphere

▶ Background sample from inclusive Z0 → qq, cc, bb using PDG branching fractions

▶ Signal sample from EvtGen with e.g. B0 → K∗0νν or B0
s → ϕνν with reweighted

q2 distribution

▶ Many thanks to IDEA and FCCAnalysis developers

▶ Easy initial win from cut on Ediff
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The analysis

▶ Train two MVAs, one “Event-level” and one “Decay-level”

Event-level MVA inputs

▶ Event energy distributions

▶ Event vertex information

Decay-level MVA inputs

▶ Intermediate candidate kinematics

▶ Intermediate candidate topology

▶ The nominal B-meson energy (mZ − Erec)
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▶ Use multivariate splines to build efficiency maps across the (BDT1, BDT2) plane
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Backgrounds

▶ For modes with an intermediate resonance the serious backgrounds are those with
real K∗0 or ϕ

▶ In a “real-life” analysis would fit in intermediate candidate mass to remove fakes
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Sensitivity estimate

▶ Signal expectation is computed as

S = NZ B(Z → bb) 2 fB B(B → Y νν)B(Y → f) ϵspre ϵ
s
BDTs,

▶ Background expectation computed as

B =
∑

f∈{bb,cc,qq}

NZ B(Z → f) ϵbpre ϵ
b
BDTs,

assuming

▶ 6× 1012 Z0 in FCC-ee operation
▶ known / predicted production fractions and branching ratios
▶ analysis efficiencies

▶ Run full analysis for B0 → K∗0νν and B0
s → ϕνν

▶ Extrapolate to estimate for B0 → K0
Sνν and Λ0

b → Λνν
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Results
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▶ Sensitivity at the SM prediction

▶ Extrapolates to 3.37% for B0 → K0
Sνν and 9.86% for Λ0

b → Λνν

▶ Could measure FL at ∼ 2.5% in B0 → K∗0νν and ∼ 5% in B0
s → ϕνν
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PID requirements of the detector

▶ For serious flavour analysis at FCC-ee - hadronic PID separation is vital

▶ Our analysis assumes perfect PID

▶ Naively investigate this by making random swaps (no momentum dependence)
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▶ K-π separation of 2σ would have negligible impact on the sensitivity
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Vertexing requirements of the detector

▶ For serious flavour analysis at FCC-ee - precision vertexing is essential

▶ Our analysis assumes perfect vertex seeding

▶ Naively investigate this by making random swaps

B0 → K∗0νν
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▶ Need < 0.2mm resolution to mitigate vertex mis-id
▶ But this is already above the requirements for vertex precision anyway
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EFT interpreation

▶ Extrapolate predicted sensitivities to Wilson coefficients
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▶ See the exceptional potential of FCC-ee to model-independet New Physics
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Summary and thoughts on future studies

So where is this heading (just some of my own thoughts)

▶ This was a very enjoyable experience!

▶ Would like to review and improve the software for flavour studies
▶ MC-truth level decay descriptor matching

▶ Incoporate latest improvements for neutral reconstruction

▶ Can of course expand and improve physics case studies
▶ Would be interesting to see how FCC-ee does with B+ → K+νν

▶ Could also consider the rarer b → dνν transitions

▶ Emphasis towards detector design
▶ Vertexing requirements

▶ PID requirements

▶ Implementation in simulation
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Back Up

BACK UP
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Searches at B-factories

▶ Searches at B-factories use B-mesons produced via e+e− → Υ(4S) → B+B−

▶ Event is tagged either inclusively or using specific hadronic or semileptonic decays of
the other B.

▶ Belle II results: BR( B+ → K+νν̄) < 4.1× 10−5 at 90% C.L. [arXiv:2104.12624].
▶ Expect to reach ∼ 10% precision on B+/B0 with 50 ab−1

[arXiv:1808.10567]

▶ FCC-ee is the only foreseen experiment that can improve Belle-II measurement
in the (far) future (apart from maybe CEPC)!
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Some places we cheat

Relevant for detector design

▶ Use the same vertexing procedure developed for B+
c → τ+ντ (see this talk for

details) which assumes perfect vertex seeding
→ implies we will have excellent vertex resolution

▶ We also truth match the kaon and pion daughters to have the correct mass
hypothesis (with the reconstructed momentum)
→ implies we will have excellent PID

▶ When we get a bit more advanced it would be nice to understand the impact of
relaxing these requirements.

▶ Also assume the K∗0 in the signal mode is pure K∗(892)0

None of this is particularly relevant for the event level MVA we have trained so far (and
show today) but it will be important for the next stage MVA
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Charged energy in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral energy in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Charged multiplicity in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Neutral multiplicity in each hemisphere

▶ More discrmination power in the minimum energy hemisphere (signal side) due to
missing energy in the signal decay
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Stage 1 Inputs

▶ The total reconstructed energy in each hemisphere,

▶ The total charged and neutral reconstructed energies of each hemisphere,

▶ The charged and neutral particle multiplicities in each hemisphere,

▶ The number of charged tracks used in the reconstruction of the primary vertex,

▶ The number of reconstructed vertices in the event,

▶ The number of candidates in the event

▶ The number of reconstructed vertices in each hemisphere,

▶ The minimum, maximum and average radial distance of all decay vertices from the
primary vertex.
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Stage 1 BDT
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Stage 2 BDT
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Stage 2 Inputs

▶ The intermediate candidate’s reconstructed mass

▶ The number of intermediate candidates in the event

▶ The candidate’s flight distance and flight distance χ2 from the primary vertex

▶ The x, y and z components of the reconstructed candidate’s momentum

▶ The scalar momentum of the candidate

▶ The transverse and longitudinal impact parameter of the candidate

▶ The minimum, maximum and average transverse and longitudinal impact parameters
of all other reconstructed vertices in the event

▶ The angle between the intermediate candidate and the thrust axis

▶ The mass of the primary vertex

▶ The nominal B candidate energy, defined as the Z mass minus all of the
reconstructed energy apart from the candidate children
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Backgrounds
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Spline Drop Off
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Analysis-level MVA

▶ Train a second BDT on variables related to the candidate properties:
▶ Intermediate candidate kinematics
▶ Intermediate candidate topology
▶ The nominal B-meson energy (Z mass minus Erec)

▶ Use multivariate splines to build efficiency maps across the (BDT1, BDT2) plane

▶ Then maximise the FOM, S/
√
S +B, as a function of the BDT cuts for a range of

BF values
B0 → K∗0νν B0

s → ϕνν
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