B_s decays to invisibles: First limit from LEP and possibilities at FCC-ee

Miguel Escudero Abenza

miguel.escudero@cern.ch

based on <u>2310.13043</u> with: Gonzalo Alonso-Álvarez

7th Physics FCC Workshop Annecy 31-01-2024

Why Now?

- Belle II [2311.14647] Evidence for $B^+ \to K^+ \nu \bar{\nu}$ Decays 3.5σ evidence for $B^+ \to K^+ \bar{\nu} \nu$ decays using an inclusive tagging. This rate is 2.7σ larger than the SM prediction.
- This would be evidence for a $b \to s \bar{\nu} \nu$ transition and thus $B_s \to \bar{\nu} \nu$ could be a key channel to help in the interpretation. In particular because $BR(B_s \to \bar{\nu} \nu)|_{SM} \propto (m_{\nu}/m_B)^2 \simeq 0$

• **However:** when including S and P operators. Presently, no upper limit on the branching ratio of $B_s^0 \rightarrow$ invisibles exists, (simply because B_s are not produced in the $\Upsilon(4S)$)

Then: The first limit on invisible decays of B_s mesons comes from LEP Gonzalo Alonso-Álvarez^{1, 2, *} and Miguel Escudero Abenza^{3, †}

recast of an old ALEPH analysis:

$$BR(B_s \to \bar{\nu}\nu) < 6 \times 10^{-4}$$

2310.13043

Miguel Escudero (CERN)

Outline

• Status of $B \rightarrow K \bar{\nu} \nu$ transitions and interpretation

Searches for b decays with large missing energy at LEP

The basic elements of the analysis

Results

• $B \rightarrow \text{invisibles}$ at FCCee: Lessons learned from LEP

Implications for other scenarios*:

B-Mesogenesis

Flavorful Axions

Miguel Escudero (CERN)

 $D \rightarrow \Lambda \nu \nu$ decays using an inclusive lagging. What is intriguing is that the rate appears to be 2.7σ larger than the SM prediction.

This mode at B-factories: $\bar{B}B(\rightarrow K\bar{\nu}\nu)$

Miguel Escudero (CERN)

Belle II : Inclusive Analysis

Belle II BSM interpretations

1) Heavy New Physics: ^{2309.02246} Allwicher, Bečirević, Piazza, Rosauro-Alcaraz & Sumensari 2309.00075 Bause, Gisbert & Hiller

Decays of the type $B \to KX$ or $B \to K\chi\chi$ could explain even better the Belle II spectrum

Table 3 Number of entries in tail of E_{miss} spectrum.

Source	Missing energy (GeV)			
	$\overline{30} < E_{miss} < 35$	$35 < E_{miss} < 40$	$40 < E_{miss}$	
data]4	1	0	
$B^- \to \tau^- \bar{\nu}_{\tau}$ (1%)	35.8 ± 3.2	17.6 ± 2.3	4.8 ± 1.2	
$b ightarrow au^- ar{ u}_ au X$	3.3 ± 1.2	2.0 ± 0.9	0	
$b, ar{c} ightarrow e^-/\mu^- ar{ u} { m X}$	8.3 ± 1.9	1.4 ± 0.8	0	
$D_s^- \rightarrow \tau^- \bar{\nu}_{\tau}$	0	0	0	
residual background	0.4 ± 0.4	0	0	
D_s^- and the lepton respectively. (E_{ν}) is estimated using a missi It is given by $E_{\nu} = E_{\text{tot}} - E_{\text{vis}}$, where E_{tot} and E_{vis} are the total	The neutrino energy ng energy technique.	$\begin{array}{c} \mathbf{y} \\ $	ALE 7 0 0 0 0 10 20 30 Emiss	PH $\tau \bar{\nu}_{\tau}$ alysis 40 (GeV)

Fig. 4. E_{miss} spectrum for $B^- \rightarrow \tau^- \bar{\nu}_{\tau}$ exclusive analysis.

The analysis method for $B^- \to \tau^- \bar{\nu}_{\tau}$ is essentially

branching ratio by comparing data and Monte Carlo in

Searches for b-decays with ME at LEP

In fact: the first limit on $b \rightarrow s\bar{\nu}\nu$ comes from LEP:

First limit on inclusive $B \rightarrow X_s \nu \bar{\nu}$ decay and constraints on new physics

hep-ph/9510378

Yuval Grossman^{a,1}, Zoltan Ligeti^{b,2}, Enrico Nardi^{a,3}

^a Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel ^b California Institute of Technology, Pasadena, CA 91125, USA

Received 2 November 1995; accepted 29 January 1996

Subsequent analysis by ALEPH (hep-ex/0010022) lead to:

$$Br(b \to s \bar{\nu} \nu) < 6.4 \times 10^{-4}$$
 at 90% CL

$$\mathrm{Br}(b \to s \bar{\nu} \nu) |_{\mathrm{SM}} = (2.7 \pm 0.2) \times 10^{-5}$$
 (0902.0160:
Altmannshofer, Buras, Straub & Wick

Also Grossman, Ligeti and Nardi (hep-ph/9607473) $B \rightarrow \tau \tau B \rightarrow \nu \nu \gamma$

There is no b-decay that can lead to more ME than $B \rightarrow$ invisibles!

Our study:

$$Br(B_s \rightarrow \text{invisibles}) < 5.9 \times 10^{-4}$$
 at 90% CL

Miguel Escudero (CERN)

The Process

Miguel Escudero (CERN)

 $\text{Bs} \rightarrow \text{invisibles}$ at LEP and FCCee

7th FCC workshop 31-01-24 9

Essence of the analyses at ALEPH

1) Look at 2-jet events, $Z \rightarrow \bar{q}q$: T > 0.85 and $|\cos \theta| < 0.7$

2) Separate events in two hemispheres defined by the thrust axis

3) Measure missing energy as $E_{\rm miss} \simeq M_Z/2 - E_{\rm vis}$

- 4) Only use opposite hemispheres with $E_{\rm miss}$ < 25 GeV and \geq 6 charged tracks
- 5) Apply b-tagging in the hemisphere without large missing energy

6) Use e/μ rejection algorithms to remove $b, \bar{c} \rightarrow \ell \nu X$ events

Miguel Escudero (CERN)

Prediction of the spectrum

1) What is the fraction of the beam energy carried out by the B_s ?

~ 70%

Figure 13: Comparison between the various measurements of the b-quark fragmentation distribution versus $x_{\rm B}^{\rm weak}$.

2) Hadronization fractions [HFLAV]

$$f_{B_s} = 0.101 \pm 0.008$$
,
 $f_{B_d/B^{\pm}} = 0.407 \pm 0.007$,
 $f_{b-baryons} = 0.085 \pm 0.011$.

3) Number of events: $N(Z \rightarrow \text{hadrons}) = 4 \times 10^6$ Br $(Z \rightarrow b\bar{b})/\text{Br}(Z \rightarrow \text{hadrons}) \simeq 22\%$

4) The efficiency after all of the cuts are performed is 8 % : $\frac{\text{efficiency}(B^- \to \tau^- \bar{\nu}_{\tau}) = 8.1\%}{\text{efficiency}(b \to s\bar{\nu}\nu) = 8.8\%}$

Results

Power of the searches and outlook

Limit at 90% CL		$N_{bar{b}}$
LEP:	$Br(B_d \rightarrow invisibles) < 1.4 \times 10^{-4}$	0.9 M
BaBar: 1206.2543	$Br(B_d \rightarrow invisibles) < 2.4 \times 10^{-5}$	471 M
Belle II with ${\mathscr L}$	= 5 ab^{-1} at the $\Upsilon(5S)$ resonance:	
	$Br(B_s \rightarrow invisibles) < 10^{-5}$ 1808.10567	and improve our limi by a factor of 40!

Ideal place to look at these decays: FCCee

Sensitivity beyond ~ 10^{-5} dependent upon further tagging methods since, e.g. $Br(b \rightarrow s\bar{\nu}\nu)|_{SM} = (2.7 \pm 0.2) \times 10^{-5}$.

see Amhis et al. 2105.13330, 2309.11353 and Fedele et al. 2305.02998

and talk this morning by Matthew Kenzie

Miguel Escudero (CERN)

FCCee: lessons learned

see: CDS-link '94

Measurement of the $b \rightarrow \tau^- \overline{\nu}_{\tau} X$ Inclusive/Exclusive Branching Ratios

I.R. Tomalin

Muon and electron detection efficiencies are key to reduce background. In particular, muon efficiencies at low momentum

Figure 5b: μ^{\pm} identification efficiency.

There were considerable systematics arising from inaccurate neutral energy deposition modeling in the HCAL. In particular by high energy neutrons & K_L

Figure 1a: E_{miss} before recalibration, using light quark tag and e^{\pm}/μ^{\pm} rejection.

Figure 1b: E_{miss} after recalibration, using light quark tag and e^{\pm}/μ^{\pm} rejection, and $E_{neut} < 7 \text{ GeV}$ cut.

Miguel Escudero (CERN)

Bs \rightarrow invisibles at LEP and FCCee

7th FCC workshop 31-01-24 14

Conclusions

Revisited and old search for b-decays with large missing energy at LEP. Found the first constraint on $B_s \rightarrow \text{invisibles}$

$$Br(B_s \rightarrow invisibles) < 5.9 \times 10^{-4}$$
 90% CL

Not yet able to test the parameter space of light BSM models capable of explaining the Belle II signal, but we thought it was interesting

As a search strategy it is really powerful as shown by comparison with dedicated BaBar search for $B_d \rightarrow invisibles$

Something interesting to do: Actual full reanalysis of the old data see talk by Marcello Maggi on Tuesday

What can FCC-ee do? A sensitivity analysis is still missing but:

1) Have as good as possible e/μ ID, particularly at low momenta

2) Be mindful of MC simulations of neutral energy deposition (n, K_L)

3) Probably have a very good understanding of the b fragmentation function will be useful as well

Miguel Escudero (CERN)

Thank you!

Gonzalo Alonso-Álvarez, U. Toronto

Questions, Comments and Criticism are most welcome!

miguel.escudero@cern.ch

gonzalo.alonso@utoronto.ca

Miguel Escudero (CERN)

Back up

Miguel Escudero (CERN)

 $\mbox{Bs} \rightarrow \mbox{invisibles}$ at LEP and FCCee

7th FCC workshop 31-01-24 17

B-Mesogenesis

B-Mesogenesis: Baryogenesis and Dark Matter from B-Mesons

B-Mesogenesis

4 Flavourful variations exist*: (All work equally well for Baryogenesis)

Miguel Escudero (CERN)

Light new scalars

Light new scalars coupled to quarks can also lead to Missing Energy in B decays:

2002.04623 Martin Camalich, Pospelov, Hoa Vuong, Ziegler & Zupan 2201.06580 Ferber, Filimonova, Schafer & Westhoff 2306.09508 Ovchynnikov, Schmidt & Schwetz

 $B \rightarrow Ka$

Strategy employed is to recast the old searches by BaBar:

FIG. 5: (color online) The s_B distribution for (from top to bottom) $B^+ \to K^+ \nu \overline{\nu}$, $B^0 \to K^0 \nu \overline{\nu}$, $B^+ \to K^{*+} \nu \overline{\nu}$, and $B^0 \to K^{*0} \nu \overline{\nu}$ events after applying the full signal selection. The expected combinatorial (shaded) plus $m_{\rm ES}$ -peaking (solid) background contributions are overlaid on the data (points). The signal MC distributions (dashed) are normalized to branching fractions of 20×10^{-5} for $B^+ \to K^+ \nu \overline{\nu}$ and 50×10^{-5} for the other channels. Events to the left of the vertical lines are selected to obtain SM-sensitive limits, while the full spectra are used to determine partial branching fractions.

