Bs decays to invisibles: First limit from L-EP and possibilities at FCC-ee

Miguel Escudero Abenza

miguel.escudero@cern.ch

based on 2310.13043 with: Gonzalo Alonso-Álvarez

7th Physics FCC Workshop Annecy
31-01-2024

Why Now?

Belle II [2311.14647] Evidence for $B^{+} \rightarrow K^{+} \nu \bar{\nu}$ Decays 3.5σ evidence for $B^{+} \rightarrow K^{+} \bar{\nu} \nu$ decays using an inclusive tagging. This rate is 2.7σ larger than the SM prediction.

This would be evidence for a $b \rightarrow s \bar{\nu} \nu$ transition and thus $B_{s} \rightarrow \bar{\nu} \nu$ could be a key channel to help in the interpretation. In particular because $\left.\mathrm{BR}\left(B_{s} \rightarrow \bar{\nu} \nu\right)\right|_{\mathrm{SM}} \propto\left(m_{\nu} / m_{B}\right)^{2} \simeq 0$

- However: when including S and P operators. Presently, no upper limit on the branching ratio of $B_{s}^{0} \rightarrow$ invisibles exists, (simply because $\mathrm{B}_{\mathbf{s}}$ are not produced in the $\Upsilon(4 S)$)

Bause, Gisbert \& Hiller 2309.00075

Then: The first limit on invisible decays of B_{s} mesons comes from LEP

$$
\text { Gonzalo Alonso-Álvarez }{ }^{1,2, *} \text { and Miguel Escudero Abenza }{ }^{3, \dagger}
$$

recast of an old ALEPH analysis:

$$
\mathrm{BR}\left(B_{s} \rightarrow \bar{\nu} \nu\right)<6 \times 10^{-4}
$$

$\underline{2310.13043}$

Status of $B \rightarrow K \bar{\nu} \nu$ transitions and interpretation

Searches for b decays with large missing energy at LEP
The basic elements of the analysis

- Results
$B \rightarrow$ invisibles at FCCee: Lessons learned from LEP
- Implications for other scenarios*:

B-Mesogenesis
Flavorful Axions

Belle II results

Belle II [2311.14647] has recently reported 3.5σ evidence for $B^{+} \rightarrow K^{+} \bar{\nu} \nu$ decays using an inclusive tagging. What is intriguing is that the rate appears to be 2.7σ larger than the SM prediction.

This mode at B-factories: $\quad \bar{B} B(\rightarrow K \bar{\nu} \nu)$
a) Hadronic Tag
$\bar{B} \rightarrow$ hadrons
eff $\sim 0.4 \%$
b) Semileptonic Tag

$$
\begin{aligned}
\bar{B} & \rightarrow \nu \ell^{+} X \\
\mathrm{eff} & \sim 1.6 \%
\end{aligned}
$$

c) Inclusive Tag

$$
\begin{gathered}
\bar{B} \rightarrow \text { anything } \\
\text { eff } \sim 8 \%
\end{gathered}
$$

Belle II : Inclusive Analysis

Series of boosted decision trees on global properties of the event:

Combined Result: $\mathrm{BR}\left(B^{+} \rightarrow K^{+} \bar{\nu} \nu\right)=(2.3 \pm 0.7) \times 10^{-5}$
Standard Model: $\left.\operatorname{BR}\left(B^{+} \rightarrow K^{+} \bar{\nu} \nu\right)\right|_{\text {SM }}=(0.51 \pm 0.03) \times 10^{-5} \quad$ larger
Bečirević, Piazza \&
Sumensari 2301.06990

Belle II BSM interpretations

1) Heavy New Physics:

2309.02246 Allwicher, Bečirević, Piazza, Rosauro-Alcaraz \& Sumensari 2309.00075 Bause, Gisbert \& Hiller

Models face the strong constraint of $\mathrm{BR}\left(B \rightarrow K^{\star} \bar{\nu} \nu\right)<\left.1.8 \mathrm{BR}\left(B \rightarrow K^{\star} \bar{\nu} \nu\right)\right|_{\mathrm{SM}}$
This requires right handed couplings to quarks which imply non-minimal e.g., 2 BSM sectors which need to be balanced to avoid flavor constraints leptoquarks
2) Light New Physics: ${ }_{231121.14629 \text { Altmannshofer, Crivellin, Haigh, Inguglia \& Martin Camalich }}^{\text {23 }}$ 2312.12507 Fridell, Ghosh, Okui \& Tobioka 2312.00982 McKeen, Ng \& Tuckler 2309.02940 FelkI, Giri, Mohanta \& Schmidt

Decays of the type $B \rightarrow K X$ or $B \rightarrow K \chi \chi$ could explain even better the Belle II spectrum

Belle II [2311.14647]

2312.12507
$B \rightarrow K \chi \chi$ [Vector]

This means that $B_{s} \rightarrow$ invisibles decays are key to elucidate the situation $\operatorname{BR} \sim 10^{-4}$

Searches for b-decays with ME at LEP

Missing Energy was a key observable in many b-quark physics analysis at the LEP experiments:

Measurement of the B_{s}^{0} lifetime

ALEPH Collaboration

D_{s}^{-}and the lepton respectively. The neutrino energy $\left(E_{\nu}\right)$ is estimated using a missing energy technique. It is given by
$E_{\nu}=E_{\mathrm{tot}}-E_{\mathrm{vis}}$,
where $E_{\text {tot }}$ and $E_{\text {vis }}$ are the total and visible energies in the same hemisphere as the B_{s}^{0} candidate. The vis-

Measurement of the $b \rightarrow \tau^{-} \bar{\nu}_{\tau} X$ branching ratio and an upper limit
on $B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$
ALEPH Collaboration

Fig. 4. $E_{\text {miss }}$ spectrum for $\mathrm{B}^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}$ exclusive analysis.

Searches for b-decays with ME at LEP

In fact: the first limit on $b \rightarrow s \bar{\nu} \nu$ comes from LEP:
hep-ph/9510378
First limit on inclusive $B \rightarrow X_{s} \nu \bar{\nu}$ decay and constraints on new physics
Yuval Grossman ${ }^{\text {a,1 }}$, Zoltan Ligeti ${ }^{\text {b,2 }}$, Enrico Nardi ${ }^{\text {a,3 }}$
${ }^{a}$ Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel
${ }^{\text {b }}$ California Institute of Technology, Pasadena, CA 91125, USA
Received 2 November 1995; accepted 29 January 1996
Subsequent analysis by ALEPH (hep-ex/0010022) lead to:

$$
\begin{gathered}
\operatorname{Br}(b \rightarrow s \bar{\nu} \nu)<6.4 \times 10^{-4} \text { at } 90 \% \mathrm{CL} \\
\left.\operatorname{Br}(b \rightarrow s \bar{\nu} \nu)\right|_{\mathrm{SM}}=(2.7 \pm 0.2) \times 10^{-5} \begin{array}{c}
\text { O. } \\
\substack{\text { Alta2.0160: } \\
\text { Stranksiofer, Buras, }, ~ W i c k ~}
\end{array}
\end{gathered}
$$

Also Grossman, Ligeti and Nardi (hep-ph/9607473) $B \rightarrow \tau \tau B \rightarrow \nu \nu \gamma$
There is no b-decay that can lead to more ME than $B \rightarrow$ invisibles!
Our study: $\quad \operatorname{Br}\left(B_{s} \rightarrow\right.$ invisibles $)<5.9 \times 10^{-4}$ at $90 \% \mathrm{CL}$

Essence of the analyses at ALEPH

1) Look at 2-jet events, $Z \rightarrow \bar{q} q: T>0.85$ and $|\cos \theta|<0.7$
2) Separate events in two hemispheres defined by the thrust axis

$$
T=\max _{\vec{n}} \frac{\sum_{i}\left|\vec{p}_{i} \cdot \vec{n}\right|}{\sum_{i}\left|\vec{p}_{i}\right|}
$$

3) Measure missing energy as $E_{\text {miss }} \simeq M_{Z} / 2-E_{\text {vis }}$
4) Only use opposite hemispheres with $E_{\text {miss }}<25 \mathrm{GeV}$ and ≥ 6 charged tracks
5) Apply \mathbf{b}-tagging in the hemisphere without large missing energy
6) Use e / μ rejection algorithms to remove $b, \bar{c} \rightarrow \ell \nu X$ events

Result: hep-ex/0010022

Prediction of the spectrum

1) What is the fraction of the beam energy carried out by the B_{s} ?
~ 70\%

DELPHI 1102.4748

Figure 13: Comparison between the various measurements of the b-quark fragmentation distribution versus $x_{\mathrm{B}}^{\text {weak }}$.
2) Hadronization fractions [HFLAV]

$$
\begin{aligned}
f_{B_{s}} & =0.101 \pm 0.008 \\
f_{B_{d} / B^{ \pm}} & =0.407 \pm 0.007, \\
f_{\mathrm{b}-\text { baryons }} & =0.085 \pm 0.011
\end{aligned}
$$

3) Number of events: $N(Z \rightarrow$ hadrons $)=4 \times 10^{6}$

$$
\operatorname{Br}(Z \rightarrow b \bar{b}) / \operatorname{Br}(Z \rightarrow \text { hadrons }) \simeq 22 \%
$$

4) The efficiency after all of the cuts are performed is 8% : efficiency $\left(B^{-} \rightarrow \tau^{-} \bar{\nu}_{\tau}\right)=8.1 \%$

Results

$\operatorname{Br}\left(B_{s} \rightarrow\right.$ invisibles $)<5.9 \times 10^{-4}$ at $90 \% \mathrm{CL}$
$\operatorname{Br}\left(B_{d} \rightarrow\right.$ invisibles $)<1.4 \times 10^{-4}$ at $90 \% \mathrm{CL}$

Power of the searches and outlook

Limit at 90\% CL

$\operatorname{Br}\left(B_{d} \rightarrow\right.$ invisibles $)<1.4 \times 10^{-4}$
BaBar:
$\operatorname{Br}\left(B_{d} \rightarrow\right.$ invisibles $)<2.4 \times 10^{-5}$
471 M 1206.2543

Belle II with $\mathscr{L}=5 \mathrm{ab}^{-1}$ at the $\Upsilon(5 S)$ resonance:

$$
\operatorname{Br}\left(B_{s} \rightarrow \text { invisibles }\right)<10^{-5} 1808.10567 \quad \begin{aligned}
& \text { and improve our limit } \\
& \text { by a factor of } 40!
\end{aligned}
$$

Ideal place to look at these decays: FCCee

Sensitivity beyond $\sim 10^{-5}$ dependent upon further tagging methods since, e.g. $\left.\operatorname{Br}(b \rightarrow s \bar{\nu} \nu)\right|_{\mathrm{SM}}=(2.7 \pm 0.2) \times 10^{-5}$.
see Amhis et al. 2105.13330, 2309.11353 and Fedele et al. 2305.02998
and talk this morning by Matthew Kenzie

FCCee: lessons learned

see: CDS-link '94

Measurement of the $b \rightarrow \tau^{-} \bar{\nu}_{\tau} \mathrm{X}$ Inclusive/Exclusive Branching Ratios
I.R. Tomalin
C.E.R.N.

Muon and electron detection efficiencies are key to reduce background. In particular, muon efficiencies at low momentum

Figure 5b: $\mu^{ \pm}$identification efficiency.
There were considerable systematics arising from inaccurate neutral energy deposition modeling in the HCAL. In particular by high energy neutrons \& KL

Figure 1a: $E_{\text {miss }}$ before recalibration, using light quark tag and $e^{ \pm} / \mu^{ \pm}$rejection.

Figure 1b: $E_{\text {miss }}$ after recalibration, using light quark tag and $e^{ \pm} / \mu^{ \pm}$rejection, and $E_{\text {neut }}<7 \mathrm{GeV}$ cut

Conclusions

Revisited and old search for b-decays with large missing energy at LEP. Found the first constraint on $B_{s} \rightarrow$ invisibles

$$
\operatorname{Br}\left(B_{s} \rightarrow \text { invisibles }\right)<5.9 \times 10^{-4} \quad 90 \% \mathrm{CL}
$$

Not yet able to test the parameter space of light BSM models capable of explaining the Belle II signal, but we thought it was interesting

As a search strategy it is really powerful as shown by comparison with dedicated BaBar search for $B_{d} \rightarrow$ invisibles

Something interesting to do:

Actual full reanalysis of the old data
see talk by Marcello Maggi on Tuesday

What can FCC-ee do? A sensitivity analysis is still missing but:

1) Have as good as possible e / μ ID, particularly at low momenta
2) Be mindful of MC simulations of neutral energy deposition (n, K_{L})
3) Probably have a very good understanding of the b fragmentation function will be useful as well

Thank you!

Gonzalo Alonso-Álvarez, U. Toronto

Questions, Comments and Criticism are most welcome!

Back up

B-Mesogenesis

B-Mesogenesis: Baryogenesis and Dark Matter from B-Mesons

Elor, M.E.A., Nelson 1810.00880
Alonso-Álvarez, Elor, M.E.A., 2101.02706
see also:
Aitken, McKee, Neder, Nelson 1708.01259
Nelson \& Xiao 1901.08141, Alonso-Álvarez, Elor, Nelson, Xiao 1907.10612

Low Reheating Temperature
$T_{R} \sim 15 \mathrm{MeV}$

B-mesons decay into Dark Matter and hadrons
Dark Matter
(anti-Baryon)

Key Prediction:

$$
\operatorname{Br}(B \rightarrow \psi+\text { Baryon }+X)>10^{-4}
$$

B-Mesogenesis

4 Flavourful variations exist*: (All work equally well for Baryogenesis)

$\psi b u s$	$\psi b u d$	$\psi b c s$	$\psi b c d$
$B_{d} \rightarrow \psi+\Lambda(u s d)$	$B_{d} \rightarrow \psi+n(u d d)$	$B_{d} \rightarrow \psi+\Xi_{c}^{0}(c s d)$	$B_{d} \rightarrow \psi+\Lambda_{c}+\pi^{-}(c d d)$
$B_{s} \rightarrow \psi+\Xi^{0}(u s s)$	$B_{s} \rightarrow \psi+\Lambda(u d s)$	$B_{s} \rightarrow \psi+\Omega_{c}(c s s)$	$B_{s} \rightarrow \psi+\Xi_{c}^{0}(c d s)$
$B^{+} \rightarrow \psi+\Sigma^{+}($uus $)$	$B^{+} \rightarrow \psi+p(d u u)$	$B^{+} \rightarrow \psi+\Xi_{c}^{+}(c s u)$	$B^{+} \rightarrow \psi+\Lambda_{c}^{+}(d c u)$
$\Lambda_{b} \rightarrow \bar{\psi}+K^{0}$	$\Lambda_{b} \rightarrow \bar{\psi}+\pi^{0}$	$\Lambda_{b} \rightarrow \bar{\psi}+D^{-}+K^{+}$	$\Lambda_{b} \rightarrow \bar{\psi}+\bar{D}^{0}$

Light new scalars

Light new scalars coupled to quarks can also lead to Missing Energy in B decays:

2002.04623 Martin Camalich, Pospelov, Hoa Vuong, Ziegler \& Zupan 2201.06580 Ferber, Filimonova, Schafer \& Westhoff 2306.09508 Ovchynnikov, Schmidt \& Schwetz

$B \rightarrow K a$

Strategy employed is to recast the old searches by BaBar:

FIG. 5: (color online) The s_{B} distribution for (from top to bottom) $B^{+} \rightarrow K^{+} \nu \bar{\nu}, B^{0} \rightarrow K^{0} \nu \bar{\nu}, B^{+} \rightarrow K^{*+} \nu \bar{\nu}$, and $B^{0} \rightarrow K^{* 0} \nu \bar{\nu}$ events after applying the full signal selection. The expected combinatorial (shaded) plus $m_{\text {Es }}$-peaking (solid) background contributions are overlaid on the data (points). The signal Nistributions (dashed) are normalized to branching fractions of 20×10^{-5} for the $B \xrightarrow{\longrightarrow} K \bar{\nu}$ and 50×10^{-5} for the other channels. Events to the left of the ver tical lines are selected to obtain SM-sensitive limits, while the full spectra are used to determine partial branching fractions.

$$
N_{B} \sim 4.7 \times 10^{8}
$$

To be compared with:

$$
\text { efficiency } \sim 10^{-3}
$$

$$
\operatorname{Br}(B \rightarrow K a) \lesssim 10^{-5}
$$

