Rare and exclusive few-body decays of the Higgs, Z, and W bosons, and the top quark

David d'Enterria^(b) and <u>Van Dung Le^{(a)*}</u>

arxiv:2312.11211

(a) Ho Chi Minh University of Science - Vietnam National University(b) CERN, EP Department, CH-1211 Geneva, Switzerland

* speaker

Introduction

- The work:
 - Comprehensive collection of all 2- & 3-body rare/exclusive decays branching fractions (BR<10⁻⁵) of the 4 heaviest particles:

~200 unobserved channels (~ 50 experimental upper limits today).

- Identify missing channels and estimate their rates. Explicitly compute a few new decays
 (Z,H → leptonium+gamma, Higgs FCNC exclusive decays,...). Update some older theoretical BR results.
- Make projections for HL-LHC/FCC-ee searches: Help guide and prioritize future experimental searches.
- Structure of the talk Physics motivations:
 - Explain the structure of the results.
 - 1 Probe lighter quark Yukawa couplings: Hcc, Hqq, via exclusive final states with mesons.
 - 2 Precision tests of very suppressed processes in the SM : FCNC in Z, H, and top decays.
 - 3 Stringent tests of the QCD factorization formalism, constraint poorly known nonperturbative hadronic bound-state parameters
 - 4 Effect on BSM physics searches at the FCCee.

Explanation - Theoretical predictions

	-						
For all rare decays collected, we indicate the						Exp.	limits
		$H \rightarrow \gamma +$	X	Branching fraction	Framework	2023	HL-LHC
- Branching fraction			$ ho^0$	$(1.68 \pm 0.18) \times 10^{-5}$	SCET+LCDA [13]	< 8.8×10 ⁻⁴ [74]	$\lesssim 6.8 \times 10^{-5}$
- Theoretical framework	Example		ω	$(1.48 \pm 0.17) \times 10^{-6}$	SCET+LCDA [13]	< 1.5×10 ⁻⁴ [76]	$\lesssim 2.2\times 10^{-5}$
Theoretical framework .			ϕ	$(2.31 \pm 0.26) \times 10^{-6}$	SCET+LCDA [13]	$< 4.8 \times 10^{-4}$ [74]	$\lesssim 3.7\times 10^{-5}$
				$(2.95 \pm 0.38) \times 10^{-6}$	SCET+LCDA [13]		
			J/ψ	$(3.01 \pm 0.15) \times 10^{-6}$	NRQCD (NLL)+LDME [78]	$< 3.5 \times 10^{-4}$ [77]	$\lesssim 5.5 \times 10^{-5}$ [54]
				$\left(3.0^{+0.2}_{-0.1} ight) \ imes 10^{-6}$	NRQCD+LCDA [79]		

- For rare elementary decays: We indicate the perturbative level, LO/NLO
- Exclusive hadronic channels, we indicate type of QCD factorization : cross-section = perturbative \otimes non-perturbative. Models of QCD factorization:
 - Light cone (LC): nonperturbative objects described by LCDAs. Applied for light-quark mesons (uds)
 - Soft-Collinear Effective Theory (SCET): Resums multiple scales. Nonperturbative LCDAs. Mostly used for light & energetic mesons.
 - Heavy-Quark Effective Theory (HQET): Nonperturbative LCDA describes mixed formation of light-heavy-quark mesons
 - Non-Relativistic QCD (NRQCD): Nonperturbative objects described by LDMEs. For decays to charmonium & bottomonium
- Leptonium channels: similar to hadronic ones, with much smaller BR. Never computed before. We have applied similar methods and derived the BR predictions.
- We have updated a few old results & computed a few new ones using MadGraph5_aMC@NLO (virtual QCD & EW)
- Fill in a few missing exclusive channels using the existing theoretical expressions

Explanation - Experimental limits: Present & projections

- For all rare decays collected, we:
 - Indicate all <u>current limits</u> (LEP, Tevatron, LHC), including most recent ones (not yet on PDG).
 - Provide <u>extrapolation of limits</u> for the HL-LHC either from
 - Existing dedicated CMS/ATLAS studies.
 - Our statistical projection from the current limits
 - For LHC limits: scale the 13-TeV bounds down by $\sqrt{2 \times 3 \text{ ab}^{-1} / \mathcal{L}_{int}(13 \text{ TeV})}$ ~ Improvement by ~6.5 factor
 - For CDF limits, scale bounds down by $\sqrt{N_{\rm X}({\rm HL-LHC})/N_{\rm X}({\rm Tevatron})}$ ~ Improvement (W,Z) by ~70 factor

4/26

					Exp.	limits	Produc	cible at
	${ m H} ightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
Example:		$ ho^0$	$(1.68 \pm 0.18) \times 10^{-5}$	SCET+LCDA [13]	< 8.8×10 ⁻⁴ [74]	$\lesssim 6.8 \times 10^{-5}$	\checkmark	\checkmark
		ω	$(1.48 \pm 0.17) \times 10^{-6}$	SCET+LCDA [13]	$< 1.5 \times 10^{-4}$ [76]	$\lesssim 2.2 \times 10^{-5}$	\checkmark	\checkmark
		ϕ	$(2.31 \pm 0.26) \times 10^{-6}$	SCET+LCDA [13]	$< 4.8 \times 10^{-4}$ [74]	$\lesssim 3.7 \times 10^{-5}$	\checkmark	\checkmark
			$(2.95 \pm 0.38) \times 10^{-6}$	SCET+LCDA [13]				
		J/ψ	$(3.01 \pm 0.15) \times 10^{-6}$	NRQCD (NLL)+LDME [78]	$< 3.5 \times 10^{-4}$ [77]	$\lesssim 5.5 \times 10^{-5}$ [54]	\checkmark	\checkmark
			$\left(3.0^{+0.2}_{-0.1} ight)\ imes 10^{-6}$	NRQCD+LCDA [79]				

Explanation - Experimental limits: Present & projections

- For all rare decays collected, we:
 - Indicate all <u>current limits</u> (LEP, Tevatron, LHC), including most recent ones (not yet on PDG).
 - Provide <u>extrapolation of limits</u> for the HL-LHC either from
 - Existing dedicated CMS/ATLAS studies.
 - Our statistical projection from previous results
 - For LHC limits: scale the 13-TeV bounds down by $\sqrt{2 \times 3 \text{ ab}^{-1} / \mathcal{L}_{int}(13 \text{ TeV})}$ ~ Improvement by ~6.5 factor

Collider	W [±] bosons		Z bosons		H bosons		top quarks		
	σ(W)	<i>N</i> (W)	$\sigma(Z)$	<i>N</i> (Z)	<i>σ</i> (H)	<i>N</i> (H)	$\sigma(tar{t})$	N(top)	
LEP	4.0 pb	0.8 × 10 ⁵	59 nb	2×10^{7}	~2, 1 fb	~5	_	_	
FCC-ee	4.0 pb	5×10^{8}	59 nb	6×10^{12}	200, 30 fb	1.9×10^{6}	0.5 pb	$3.8 imes 10^6$	
Increase factor LEP \mapsto FCC-ee	1	6250	1	300,000	70, 30	400,000	-	-	
Tevatron (1.96 TeV, 10 fb ⁻¹)	25.3 nb	2.5×10^{8}	7.6 nb	7.6×10^{7}	1.1 pb	1.1×10^{4}	7.1 pb	1.4 × 10 ⁵	
HL-LHC (14 TeV, $2 \times 3 \text{ ab}^{-1}$)	200 nb	1.2×10^{12}	62.5 nb	3.8×10^{11}	58 pb	3.5×10^{8}	1 nb	1.2×10^{10}	Ρ
FCC-hh (100 TeV, 30 ab ⁻¹)	1300 nb	4.1×10^{13}	415 nb	12×10^{13}	0.93 nb	2.8×10^{10}	35 nb	2.1×10^{12}	ra
Increase factor Tevatron \mapsto HL-LHC	8	4800	8.2	5000	52.7	31 800	141	86 000	
Increase factor HL-LHC → FCC-hh	6.5	34	6.7	32	16	80	35	175	

- For CDF limits, scale bounds down by $\sqrt{N_{\rm X}({\rm HL-LHC})/N_{\rm X}({\rm Tevatron})}$ ~ Improvement (W,Z) by ~70 factor

Particle number ratios

Explanation - Future limits: FCC-ee and FCC-hh reaches

- For all rare decays collected, we:
 - Indicate whether the decay will be producible at FCC-ee/FCC-hh by simply checking the relation $[BR(X) \times N(X)] > 1$?

Collider	W± t	osons	Zb	osons	H bo	osons	top	quarks		H.W.Z.top
	σ(W)	<i>N</i> (W)	$\sigma(Z)$	<i>N</i> (Z)	<i>σ</i> (H)	<i>N</i> (H)	$\sigma(t\bar{t})$	N(top)		<i>I</i> produced
LEP	4.0 pb	0.8×10^{5}	59 nb	2×10 ⁷	~2, 1 fb	~5	_			/
FCC-ee	4.0 pb	5×10^{8}	59 nb	6×10^{12}	200, 30 ft	1.9 × 10 ⁶	0.5 pb	3.8×10^6	×	
Increase factor LEP → FCC-ee	l	6250	1	300,000	70, 30	400,000	-	<u> </u>		
Tevatron (1.96 TeV, 10 fb ⁻¹)	25.3 nb	2.5×10^{8}	7.6 nb	7.6×10^{7}	1.1 pb	1.1×10^{4}	7.1 pb	1.4×10^{5}		
HL-LHC (14 TeV, $2 \times 3 \text{ ab}^{-1}$)	200 nb	1.2×10^{12}	62.5 nb	3.8×10^{11}	58 pb	3.5 × 10 ⁸	1 nb	1.2×10^{10}		
FCC-hh (100 TeV, 30 ab ⁻¹)	1300 nb (4.1×10^{13}	415 nb	1.2×10^{13}	0.93 nb	2.8×10^{10}	35 nb	2.1×10^{12}		
Increase factor Tevatron \mapsto HL-LHC	8	4800	8.2	5000	52.7	31 800	141	86 000		
Increase factor HL-LHC → FCC-hh	6.5	34	6.7	32	16	80	35	175		

Explanation - Future limits: FCC-ee and FCC-hh reaches

- For all rare decays collected, we:
 - Indicate whether the decay will be producible at FCC-ee/FCC-hh by simply checking the relation $[BR(X) \times N(X)] > 1$?

Example:

				Exp.	limits	Produc	vible at
${ m H} ightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
	$ ho^0$	$(1.68 \pm 0.18) \times 10^{-5}$	SCET+LCDA [13]	$< 8.8 \times 10^{-4}$ [74]	$\lesssim 6.8\times 10^{-5}$	✓	\checkmark
	ω	$(1.48 \pm 0.17) \times 10^{-6}$	SCET+LCDA [13]	$< 1.5 \times 10^{-4}$ [76]	$\lesssim 2.2\times 10^{-5}$	\checkmark	 Image: A second s
	ϕ	$(2.31 \pm 0.26) \times 10^{-6}$	SCET+LCDA [13]	$< 4.8 \times 10^{-4}$ [74]	$\lesssim 3.7 \times 10^{-5}$	\checkmark	\checkmark
		$(2.95 \pm 0.38) \times 10^{-6}$	SCET+LCDA [13]				
	J/ψ	$(3.01 \pm 0.15) \times 10^{-6}$	NRQCD (NLL)+LDME [78]	$< 3.5 \times 10^{-4}$ [77]	$\lesssim 5.5 \times 10^{-5}$ [54]	\checkmark	\checkmark
		$\left(3.0^{+0.2}_{-0.1} ight)\ imes 10^{-6}$	NRQCD+LCDA [79]				
	$\psi(2S)$	$(1.3 \pm 0.1) \times 10^{-6}$	SCET+LCDA [13]	< 2.0×10 ⁻³ [80]	$\lesssim 1.6 \times 10^{-4}$	\checkmark	\checkmark
$H \rightarrow \gamma +$		$(4.6^{+3.9}_{-2.8}) \times 10^{-9}$	SCET+LCDA [13]				
$\Pi \rightarrow \gamma +$	64(1.0)	(4.0 10-4 1003	- 2 0 - 10-5		/

Explanation - Future limits: FCC-ee and FCC-hh reaches

- For all rare decays collected, we:
 - Indicate whether the decay will be producible at FCC-ee/FCC-hh by simply checking the relation $[BR(X) \times N(X)] > 1$?
 - Graphically present in negative log plot <u>The shorter the purple line, the larger the BR</u>

1. <u>Higgs yukawa couplings</u> Exclusive Higgs decays: radiative + meson

- Due to the smallness of the H → cc,qq partial widths, it has been proposed to constrain quark Yukawa couplings via exclusive decays of Higgs into:
 - EW boson + 1 meson:
 - Contributions from 2 main mechanisms (direct, indirect) which interfere destructively.
 - Can be used to probe hZy effective couplings

- double meson:
 - Doubly suppressed → very small BR
 - \rightarrow Can't be produced until FCC-hh rates
 - Theoretical predictions have included more of these diagrams with time...

- Theory BRs: O(10⁻⁵ 10⁻¹⁰). Exp. limits: O(10⁻³ 10⁻⁴)
- 9 channels studied . 5 (8) producible channels at FCC-ee (FCC-hh).
- $H \rightarrow \gamma + \rho$ maybe observed at HL-LHC (set upper bound for light quark Yukawa of higgs)

• No observable channel at HL-LHC

$H \rightarrow W + meson$

		F	I → W	+ n	nesc	on				<i>m</i> <i>q</i> ⁽¹⁾	× w, ×		
				Exj	p. limits	Produc	cible at	$^{-}$ $A_{ m direct}$	-4	1 w		- Y	
$H \rightarrow W +$	Μ	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh	- 1		C C, W, X		, w, x	
	π^{\pm}	$(4.2 \pm 0.2) \times 10^{-6}$ $(4.3 \pm 0.2) \times 10^{-6}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	\checkmark	1	A_{indirect}	$H \rightarrow W^{\mp} + \pi^{\pm}$				1
	$ ho^{\pm}$	$(1.5 \pm 0.1) \times 10^{-5}$ $(1.09 \pm 0.05) \times 10^{-5}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	1	1	-	$\mathbf{H} \to \mathbf{W}^{\mp} + \rho^{\pm -}$				
1 	K±	$(3.3 \pm 0.1) \times 10^{-7}$ $(3.3 \pm 0.1) \times 10^{-7}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	×	\checkmark	_	$\mathrm{H} \rightarrow \mathrm{W}^{\mp} + \mathrm{K}^{\pm}$		•		
	K*±	$(4.3 \pm 0.2) \times 10^{-7}$ $(5.6 \pm 0.4) \times 10^{-7}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	×	\checkmark	_	$\mathrm{H} \to \mathrm{W}^{\mp} + \mathrm{K}^{*\pm} -$				
	D±	$(5.8 \pm 0.6) \times 10^{-7}$ $(5.6 \pm 0.5) \times 10^{-7}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	\checkmark	\checkmark	0 (ignored)	$H \to W^{\mp} + D^{\pm} -$			Theoretical BR Current limits	
$H \rightarrow W^{\mp} + $	D*±	$(1.3 \pm 0.1) \times 10^{-6}$ $(1.04 \pm 0.14) \times 10^{-6}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	\checkmark	\checkmark		$H \rightarrow W^+ + D^{*\pm}$			HL-LHC 14 lev, 2 FCC-ee, N(H)=1.9 FCC-hh, N(H)=2.8	$\times 10^{6}$ $\times 10^{10}$
	$D_{\rm s}^{\pm}$	$(1.6 \pm 0.1) \times 10^{-5}$ $(1.71 \pm 0.11) \times 10^{-5}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	~	~		$H \rightarrow W^{+} + D_{s}^{*}$				
	$D_s^{\ast\pm}$	$(3.5 \pm 0.2) \times 10^{-5}$ $(2.51 \pm 0.19) \times 10^{-5}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	1	1		$H \to W^{\mp} + B^{\pm} -$				
 	B±	$(1.6 \pm 0.4) \times 10^{-10}$ $(1.54 \pm 0.40) \times 10^{-10}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	×	1	_	$H \rightarrow W^{\mp} + B^{*\pm}$				
	B*±	$(1.3 \pm 0.2) \times 10^{-5}$ $(1.41 \pm 0.36) \times 10^{-10}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	1	1	_	$H \rightarrow W^{\mp} + B_c^{\pm}$				
	$\mathrm{B}^{\pm}_{\mathrm{c}}$	$(1.6 \pm 0.2) \times 10^{-8}$ $(8.21 \pm 0.83) \times 10^{-8}$	EFT+NRQM [10] EFT+LCDA [83]	-	-	×	\checkmark	_	() 5	10	15	2 -log(BR)

- Theory BRs: $O(10^{-5} 10^{-10})$. No Exp. Limits.
- No search-performed so far. 7 (11) producible channels at FCC-ee (FCC-hh)
- No bound set so far

20

$H \rightarrow \gamma$ + leptonium

				Exp	p. <mark>limit</mark> s	Produ	cible at
$H \rightarrow V +$	(ℓℓ)	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
	(ee) ₁	3.5×10^{-12}	(this work)	-	-	×	×
$H \rightarrow \gamma +$	(<i>μμ</i>) ₁	3.5×10^{-12}	(this work)	-		×	×
	$(\tau \tau)_1$	2.2×10^{-12}	(this work)	-	-	×	×
	(ee) ₁	5.2×10^{-13}	(this work)	5-2	-	×	×
	(<i>μμ</i>) ₁	5.7×10^{-13}	(this work)			×	×
U . 7	$(\tau \tau)_1$	1.4×10^{-11}	(this work)	-	-	×	×
$\Pi \rightarrow L +$	(ee) ₀	2.7×10^{-16}	(this work)		-	×	×
	(μμ) ₀	1.1×10^{-14}	(this work)	-	-	×	×
	$(\tau \tau)_0$	3.2×10^{-12}	(this work)	-		×	×

- Tiny BRs $O(10^{-12} 10^{-16})$. First time computed here.
- No channel searched for. No (0) producible channels at FCC-ee (FCC-hh)
- Note: Leptonia are long-lived = LLP signature (displaced γ , e, μ vertices)

2. <u>Flavour changing neutral current (FCNC)</u> of H, Z, and top

- Precision tests of suppressed (or forbidden) processes in the SM —FCNC— are powerful probes of BSM physics that have been mostly studied so far in b-quark decays
- Exclusive FCNC H,Z decay:
 - Goes through flavour changing vertex
 - Low theoretical uncertainty
 - Very supressed rate (BR $< 10^{-15}$)
 - Interesting channels to search for BSM FCNC with a negligible SM background

- Rare top FCNC decay:
 - many BSM extensions can enhance ratios by orders of magnitude, yielding compelling phenomenology.

$H,Z \rightarrow flavoured meson + \gamma$

				Exp. lim	its	Produ	ucible at
${\rm H} ightarrow \gamma$ +	М	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
	K*0	1.0×10^{-19}	EFT+LCDA (this work)	$< 8.9 \times 10^{-5}$ [76]	$\lesssim 1.3 \times 10^{-5}$	×	×
$H \rightarrow \alpha +$	\mathbf{D}^{*0}	7.0×10^{-27}	EFT+LCDA (this work)	_	_	×	×
$\Pi \rightarrow \gamma +$	$\overline{\mathbf{B}}^{*0}$	8.6×10^{-16}	EFT+LCDA (this work)	_	-	×	×
	$\overline{B}_{s}^{\ast 0}$	1.9×10^{-14}	EFT+LCDA (this work)	-	-	×	×
				Exp	. limits	Pro	oducible at
$\mathbf{Z} \to \boldsymbol{\gamma} \ +$	М	Branching fraction	Framework	2023	HL-LHC	2	FCC-ee
	\mathbf{K}^{0}	3.3×10^{-20}	(this work)	-	_		×
	D ⁰	$< 1.0 \times 10^{-15}$	SCET+LCDA [113, 116]	$< 2.1 \times 10^{-3}$ [11]	$\sim 3.8 \times 10^{10}$	-5	~
$\mathbf{Z} \to \gamma \ +$	D	1.4×10^{-25}	(this work)	< 2.1× 10 [11.	J ≥ 5.8 × IC		^
	B ⁰	8.3×10^{-17}	(this work)	-	-		×
	$\mathbf{B}_{\mathrm{s}}^{0}$	2.3×10^{-15}	(this work)	_	-		×

- Theory BRs: O(10⁻¹⁴-10⁻²⁷). Exp. limits: O(10⁻³ 10⁻⁵)
- 2 channels searched-for. No channels producible at FCC-ee (FCC-hh), (in the absence of BSM)

top-quark FCNC decays

					Exp.	limits	Produ	cible at		
t \rightarrow	V +	q	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh		
			$(4.55 \pm 0.23) \times 10^{-14}$	NLO SM [168]	< 4.0× 10 ⁻⁴ [160]	< 5.2 × 10-5 [57]		~		
	<u> </u>	с	$\left(4.6^{+2.0}_{-1.0} ight) imes 10^{-14}$	NLO SM [28]	< 4.0× 10 * [109]	$\lesssim 5.2 \times 10^{-6} [57]$	^	^	$t \rightarrow \gamma +$	
	ут		$(3.26 \pm 0.34) \times 10^{-16}$	NLO SM [168]	< 8 9× 10 ⁻⁵ [169]	$< 6.1 \times 10^{-6}$ [57]	×	×	0 7 7 1	
		u	3.7×10^{-16}	NLO SM [28]		\$ 0.1 × 10 [57]	· ·	<u> </u>	$t \rightarrow \gamma +$	
			$(5.31 \pm 0.27) \times 10^{-12}$	NLO SM [168]					$t \rightarrow g +$	
		c	$(4.6^{+3.0}_{-1.0}) \times 10^{-12}$	NLO SM [28]	$< 4.1 \times 10^{-4} [170]$	$\lesssim 2.3 \times 10^{-5}$ [57]	×	\checkmark		
	g +		5.7×10^{-12}	NLO SM [131]					$t \rightarrow g +$	
\rightarrow		11	$(3.81 \pm 0.34) \times 10^{-14}$	NLO SM [168]	$< 2.0 \times 10^{-5}$ [170]	$< 2.7 \times 10^{-6}$ [57]	×	×	$t \rightarrow Z +$	
		u	3.7×10^{-14}	NLO SM [28]	(2.0/(10 [[1/0]	22.7 X 10 [57]			7	
	Z +	с	1.0×10^{-14}	NLO SM [28]	$< 2.4 \times 10^{-4}$ [109]	$\lesssim 2.3 \times 10^{-5}$ [58]	×	×	$t \rightarrow Z +$	
		u	$8.0 imes 10^{-17}$	NLO SM [28]	$< 1.7 \times 10^{-4} [109]$	$\lesssim 7.3 \times 10^{-6}$ [58]	×	×	$t \to H +$	
		с	$\left(4.19^{+1.09}_{-0.86}\right) \times 10^{-15}$	NLO SM [171]	NLO SM [171]		$1721 < 8.5 \times 10^{-5}$ [50]	91 🗶	x	1 V TT -
	Н +		3.0×10^{-15}	NLO SM [28]		~ 5.5 / 10 [57]			$t \rightarrow H +$	
п		11	$(3.66^{+1.15}_{-0.97}) \times 10^{-17}$	NLO SM [171]	< 1.9× 10 ⁻⁴ [172]	$[172] < 8.5 \times 10^{-5}$ [59]				
		u	2.0×10^{-17}	NLO SM [28]		~ 0.0 / 10 [00]				

- Theory BRs: O(10⁻³-10⁻¹⁷). Exp. limits: O(10⁻⁴ 10⁻⁵)
- All 8 channels searched-for. No (1) channels producible at FCC-ee (FCC-hh), in the absence of BSM

3. <u>Study of QCD factorization</u> using exclusive Z decays

Exclusive Z decays:

- Similar mechanism to the exclusive Higgs radiative decays. _
- Large Z boson yields at colliders. _

They provides valuable information both theoretical (SCET & NRQCD validation, and LCDAs/LDMEs) and experimental (optimization of search techniques to study exclusive Higgs boson decays).

- 2 major mechanism: _
 - γ,W + 1 meson:

$Z \rightarrow \gamma$ + light meson

				Exp. lin	nits	Producible at	
$Z \rightarrow \gamma +$	М	Branching fraction	Framework	2023	HL-LHC	FCC-ee	
	π^0	$(9.8 \pm 1.0) \times 10^{-12}$	SCET+LCDA [116]	$< 2.0 \times 10^{-5}$ [107]	$\lesssim 2.8 \times 10^{-7}$	\checkmark	
	η	$(1.0 - 17.0) \times 10^{-10}$	SCET+LCDA [152]	$< 5.1 \times 10^{-5} [114]$	-	\checkmark	
	$ ho^0$	$(4.19\pm 0.47)\times 10^{-9}$	SCET+LCDA [116]	$< 2.5 \times 10^{-5}$ [73]	$\lesssim 1.8 \times 10^{-6}$	\checkmark	
$\mathbf{Z} \to \boldsymbol{\gamma} \ +$	ω	$(2.82 \pm 0.41) \times 10^{-8}$	SCET+LCDA [116]	$< 3.8 \times 10^{-7}$ [76]	$\lesssim 5.7 \times 10^{-8}$	\checkmark	
	η'	$(3.1 - 4.8) \times 10^{-9}$	SCET+LCDA [152]	$< 4.2 \times 10^{-5}$ [114]	-	✓	
	đ	$(1.17 \pm 0.08) \times 10^{-8}$	LC+LCDA [153]	$< 9.0 \times 10^{-7}$ [73]	$\leq 6.6 \times 10^{-8}$	1	
	Ψ	$(1.04 \pm 0.12) \times 10^{-8}$	SCET+LCDA [116]		~ 0.0 × 10	v	

- Theory BRs: O(10⁻⁸ 10⁻¹¹). Exp. Limits: O(10⁻⁵ 10⁻⁷)
- 6 channels searched for. 6 producible channels at FCC-ee.
- $Z \rightarrow \gamma + \omega$ is very close to be detected at HL-LHC (BR = $\frac{1}{2}$ of projected limit)
- All channels will be visible at FCC-ee

$Z \rightarrow \gamma$ + charmonium

				Exp.	limits	Producible at			$\overline{a}^{(l)}$		
$Z \rightarrow \gamma +$	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee		\overline{q}	6		
		$(9.5 \pm 0.2) \times 10^{-9}$	NRQCD (NNLO+NLL) [120]						5		
	n	$(7.42 \pm 0.61) \times 10^{-9}$	NRQCD (NLO+NLL) [121]			1			-LV	V, γ	
	η_c	6.6 ×10 ⁻⁹	NRQCD+LDME [122]	-	-	v					
		$(9.4 \pm 1.0) \times 10^{-9}$	LC+LCDA [122]								
		$(5.75^{+0.08}_{-0.09}) \times 10^{-8}$	NRQCD (NNLO+NLL) [120]				I				
		$(9.0^{+1.5}_{-1.4}) \times 10^{-8}$	LC+LCDA [123]				$Z \rightarrow \gamma + \eta_c$				
	1/./.	4.5×10^{-8}	NRQCD+LDME [122]	< 1 4×10-6 [114]	< 4.4 × 10-7 [54]	/					
	J/ψ	$(8.8\pm 0.9)\ \times 10^{-8}$	LC+LCDA [122]	< 1.4×10 [114]	≲ 4.4 × 10 ⁻ [54]	v	$Z \rightarrow \gamma + J/\psi$				
		$(9.96 \pm 1.86) \times 10^{-8}$	NRQCD+LDME [119]								Theoretical BR
		$(8.02\pm 0.45)\ \times 10^{-8}$	SCET+LCDA [58]				$ m Z ightarrow \gamma + \chi_{c0}$ +				Current limits
		$(3.74 \pm 0.05) \times 10^{-10}$	NRQCD+LDME [124]								HL-LHC 14 TeV,
<i>→ γ</i> +	χ_{c0}	1.4×10^{-10}	NRQCD+LDME [122]	_	_	\checkmark	$ m Z ightarrow \gamma + \chi_{c1}$				· FCC-ee, N(Z)=6
		$(5.0 \pm 2.0) \times 10^{-10}$	LC+LCDA [122]								
		$(2.38^{+0.01}_{-0.02}) \times 10^{-9}$	NRQCD+LDME [124]				$ m Z ightarrow \gamma + h_c +$				
	χ_{c1}	8.7 ×10 ⁻¹⁰	NRQCD+LDME [122]	-	-	\checkmark	7				
		$(5.6 \pm 2.0) \times 10^{-9}$	LC+LCDA [122]				$ m Z ightarrow \gamma + \chi_{c2}$ +				
		$(3.49^{+0.21}_{-0.23}) \times 10^{-9}$	NRQCD+LDME [124]					\		10	_ _
	h_c	3.0 ×10 ⁻⁹	NRQCD+LDME [122]	-	-	\checkmark	() ()	10	15
		$(1.0 \pm 0.4) \times 10^{-8}$	LC+LCDA [122]								
		$(3.38^{+0.19}_{-0.22}) \times 10^{-10}$	NRQCD+LDME [124]								
	χ_{c2}	2.9×10^{-10}	NRQCD+LDME [122]	-	-	\checkmark					
		$(1.0 \pm 0.4) \times 10^{-9}$	LC+LCDA [122]								

- Theory BRs: O(10⁻⁸ 10⁻¹⁰). Multiple calculations (LC, SCET, NRQCD). Exp. limits: O(10⁻⁶).
- 1 channel searched for. 6 producible channel at FCC-ee
- Z \rightarrow γ + J/ ψ maybe visible at HL-LHC

 \leftarrow c quarks

т

Ζ

$Z \rightarrow \gamma$ + bottomonium

				Exp. li	mits	Producible at
$Z \rightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee
		$(2.43 \pm 0.01) \times 10^{-8}$	NRQCD (NNLO+NLL) [120]			
	η_b	$(2.8 \pm 0.5) \times 10^{-8}$	NRQCD (NLO+NLL) [121]	_	_	v
		$(4.63 \pm 0.02) \times 10^{-8}$	NRQCD (NNLO+NLL) [120]			
		$(5.61 \pm 0.29) \times 10^{-8}$	NRQCD+LDME [125]			
	$\Upsilon(1S)$	$(4.8^{+0.3}_{-0.2})$ ×10 ⁻⁸	LC+LCDA [123]	$< 2.8 \times 10^{-6}$ [80]	$\lesssim 2.2\times 10^{-7}$	\checkmark
		$(4.93 \pm 0.51) \times 10^{-8}$	NRQCD+LDME [119]			
		$(5.39 \pm 0.16) \times 10^{-8}$	SCET+LCDA [58]			
	Y(25)	$(2.66 \pm 0.31) \times 10^{-8}$	NRQCD+LDME [125]	< 1.7×10=6 [20]	$< 1.3 \times 10^{-7}$	/
$Z \rightarrow \gamma$ +	1(23)	$(2.44^{+0.14}_{-0.13}) \times 10^{-8}$	LC+LCDA [123]	< 1.7×10 [80]	$\gtrsim 1.3 \times 10$	v
	Y(35)	$(1.93 \pm 0.25) \times 10^{-8}$	NRQCD+LDME [125]	< 4.8×10-6 [20]	$< 3.7 \times 10^{-7}$	
	1(55)	$\left(1.88^{+0.11}_{-0.10} ight)\ imes 10^{-8}$	LC+LCDA [123]	< 4.8×10 [80]	$\gtrsim 5.7 \times 10$	v
	$\Upsilon(4S)$	$(1.22 \pm 0.13) \times 10^{-8}$	SCET+LCDA [58]	_	_	\checkmark
	$\Upsilon(nS)$	$(9.96^{+0.28}_{-0.26}) \times 10^{-8}$	SCET+LCDA [58]	-	-	\checkmark
	χ_{b0}	$\left(2.7^{+0.1}_{-0.0} ight)\ imes 10^{-10}$	NRQCD+LDME [124]	_	_	\checkmark
	χ_{b1}	$(1.473^{+0.010}_{-0.011}) \times 10^{-9}$	NRQCD+LDME [124]	-	_	\checkmark
	h_b	$(9.27^{+0.36}_{-0.41}) \times 10^{-10}$	NRQCD+LDME [124]	-	_	\checkmark
	χ_{b2}	$(2.92^{+0.12}_{-0.14}) \times 10^{-10}$	NRQCD+LDME [124]	-	_	\checkmark

- Theory BRs: O(10⁻⁸ 10⁻¹⁰). Multiple calculations (LC, SCET, NRQCD). Exp. limits: O(10⁻⁶).
- 3 channels searched-for (ATLAS). 10 producible channel at FCC-ee
- $Z \rightarrow \gamma$ +Y(1S), might be visible at HL-LHC, (BR = 1/4 projected limit)

$Z \rightarrow W + meson$

- Theory BRs: O(10⁻¹⁰ 10⁻¹¹). Exp. limits: O(10⁻⁵)
- 2 channels searched for. 6 producible channels at FCC-ee
- Have not been studied since LEP time.
 - \rightarrow Improvement of limits at LHC ?

 $Z \rightarrow \pi^0$

 $Z \rightarrow \phi +$

Ζ

$Z \rightarrow c$ -meson + c-meson

								Exp. limits	Producible at	-	
$Z \rightarrow$	Μ	+	М	Branching fraction	Framework		202	23 HL-LHC	at FCC-ee		
				$(1.5 \pm 0.4) \times 10^{-11}$	NRQCD/NRC	CSM [120]				_	
			J/ψ	$(1.8 - 2.7) \times 10^{-11}$	NRQCD+LD	ME (NLO)	[122] -	_	\checkmark		
				$2.7 imes 10^{-14}$	NRQCD+LD	ME [121]				-	
			V a	2.3×10^{-12}	NRQCD+LD	ME [121]	_	_	1		
	n	т.	A c0	$(2.3 \pm 1.0) \times 10^{-12}$		1211	1.5 × 10-12	NBOCD I DME U			
	//c		Xcl	5.4×10^{-14}		h_c	$(9.5 \pm 5.0) \times 10^{-12}$	I C+LCDA [121]		-	 Image: A second s
			h	2.1×10^{-13}			$(9.5 \pm 3.0) \times 10^{-13}$	NROCD+LDME (N	LO) [122]		
			nc	$(1.0\pm 0.5)\times 10^{-12}$		Xc2	1.4×10^{-13}	NROCD+LDME [12	21] –	_	1
			V.a	9.7×10^{-13}			$(9.3 \pm 4.0) \times 10^{-13}$	LC+LCDA [121]			
			X c2	$(4.6\pm 2.0)\times 10^{-12}$			7.6×10^{-14}	NRQCD+LDME [12	21]		
				$(1.1\pm 0.3)\times 10^{-10}$		Xcl	$(1.4 \pm 1.0) \times 10^{-12}$	LC+LCDA [121]	_	-	*
				$(1.11^{+0.34}_{-0.24}) \times 10^{-10}$	χ_{c0} +	h _c	3.5×10^{-16}	NRQCD+LDME [12	21] –	-	×
			J/ψ	$(1.1 - 1.3) \times 10^{-10}$		Xc2	6.4×10^{-15}	NRQCD+LDME [12	- 21]	-	×
				2.3×10^{-14}		Xel	3.9×10^{-16}	NRQCD+LDME [12	- 21]	-	×
				2.7×10^{-11}		h.	2.9×10^{-14}	NRQCD+LDME [12	21] _	<u></u>	×
				$(1.1 - 4.1) \times 10^{-12}$	χ_{c1} +	·	$(6.1 \pm 5.0) \times 10^{-13}$	LC+LCDA [121]			
			χ_{c0}	8.3×10^{-14}		Xc2	1.3×10^{-13}	NRQCD+LDME [12	21]	-	×
	J/ψ	+		$(4.7 \pm 2.0) \times 10^{-13}$		7.02	$(2.8 \pm 2.0) \times 10^{-12}$	LC+LCDA [121]			
$Z \rightarrow$			100	$(3.5 - 4.4) \times 10^{-12}$	h _c +	h _c	9.9×10^{-17}	NRQCD+LDME [12	- 21]	-	×
			Xcl	3.5×10^{-15}		Xc2	2.3×10^{-16}	NRQCD+LDME [12	- 21] –	-	×
		3		1.5×10^{-12}	χ_{c2} +	Xc2	1.3×10^{-16}	NRQCD+LDME [12	- 21]	_	×

- Theory BRs: $O(10^{-10} 10^{-17})$. Exp. limits: $O(10^{-6})$
- 1 channel searched for. 10 producible channels at FCC-ee
- Calculations are carried out in multiple frameworks (LC, RQM, ٠ NRQCD/NRCSM, NRQCD). More contributions are considered overtime.
- Most promising place to study double meson decay.

10

5

Theoretical BR

FCC-ee, $N(Z)=6 \times 10^{1}$

20

25

Current limits HL-LHC 14 TeV, 2x3 ab

15

22/26

$Z \rightarrow$ b-meson + b-meson

						Exp. limits	5	Producible at	
$Z \rightarrow$	Μ	+	М	Branching fraction	Framework	2023	HL-LHC	at FCC-ee	$7 \rightarrow 1/a/a \pm \gamma(1S)$
	J/ψ	+	Υ(1S)	4.6×10^{-11}	NRQCD [119]	-	-	✓	$= 2 - 3/\psi + 1(15)$
7	$\eta_{\rm b}(1{ m S})$	+	$\Upsilon(1S)$	$(1.9 \pm 0.2) \times 10^{-11}$	NRQCD/NRCSM [120]	_	-	\checkmark	$Z \rightarrow \eta_{\rm b}(1S) + \Upsilon(1S)$
$L \rightarrow$	Υ(1S)	+	$\Upsilon(1S)$	$(4.4^{+0.6}_{-0.3}) \times 10^{-13}$	NRQCD/NRCSM [120]	$< 1.8 \times 10^{-6}$ [99]	$\lesssim 2.7 \times 10^{-7}$	\checkmark	$Z \rightarrow \Upsilon(1S) + \Upsilon(1S)$
	$\Upsilon(mS)$	+	$\Upsilon(nS)$	2.1×10^{-12}	NRQCD [119]	$< 3.9 \times 10^{-7}$ [99]	$\lesssim 5.9 \times 10^{-8}$	\checkmark	$7 \rightarrow \gamma(mS) + \gamma(nS)$
	Υ(1S)	+	Х	$(2.6 - 2.9) \times 10^{-6}$	NRQCD+LDME (NLO) [161]	$< 4.4 \times 10^{-5}$ [162]	-	\checkmark	- Z 7 I (IIIS) + I (IIIIS) + I (IIIS) + I (IIIIS) + I (IIIS) +
7	$\Upsilon(2S)$	+	Х	$(3.7 - 4.3) \times 10^{-6}$	NRQCD+LDME (NLO) [161]	$< 1.4 \times 10^{-4}$ [163]	-	\checkmark	$Z \rightarrow \Upsilon(1S) + X$
$L \rightarrow$	Y(3S)	+	Х	$(7.6 - 8.3) \times 10^{-6}$	NRQCD+LDME (NLO) [161]	$< 9.4 \times 10^{-5}$ [163]	-	\checkmark	$Z \rightarrow \Upsilon(2S) + X$
	$\Upsilon(nS)$	+	Х	$(1.4 - 1.5) \times 10^{-5}$	NRQCD+LDME (NLO) [161]	$(1.0 \pm 0.5) \times 10^{-4}$ [164]	-	\checkmark	$7 \rightarrow \mathcal{O}(20) + \mathbf{V}$
									$- \qquad \qquad$
									0 5 10 15 20 2

- Theory BRs: O(10⁻¹⁰ − 10⁻¹⁷). Exp. limits: O(10⁻⁴ − 10⁻⁷)
- 5 channels searched for. 7 producible channels at FCC-ee
- Most promising place to study double-bottomonia decays.

-loa(BF

4. Background to BSM searches

- Backgrounds due to rare/exclusive H,Z,W,t decays are usually neglected in BSM searches.
- Exclusive decay channels may share the same final states as in BSM searches: e.g. Meson> $\gamma\gamma$ and ALP> $\gamma\gamma$
- With large number of Z bosons at FCC-ee, rare/exclusive decays become potentially large backgrounds for BSM searches.

 \rightarrow We suggest these decays should be considered as background for BSM searches at FCC-ee

- Z \rightarrow 3 γ decay is very suppressed in the SM (6.5 10⁻¹⁰). <u>~1000 events at the FCCee</u>
- $Z \rightarrow \gamma$ + meson($\gamma\gamma$) provides about 30% extra contributions to the SM BR[$Z \rightarrow 3\gamma$]. <u>~300 events</u>
- $Z \rightarrow \gamma + a(\gamma \gamma)$ is a typical ALP/graviton search channel. 10 mesonic channels share similar final state.
 - \rightarrow Rare & Exclusive decays need to be considered in BSM searches at FCCee

Summary

- Comprehensive survey of the theoretical & experimental status of more than 200 rare and exclusive few-body decays of the 4 heaviest SM particles (H,Z,W,t). They can be used for:
 - -Determining Higgs Yukawa coupling upper bound for lighter quarks couplings
 - -Searches for BSM FCNC decays of H, Z and top quark
 - -Studies of QCD factorization/meson formation
 - -Backgrounds to many BSM decays (H,Z \rightarrow ALPs, gravitons, dark γ , ...) at FCC-ee
- Estimation of reachabilities of HL-LHC, FCC-ee/FCC-hh observations (if not BSM-enhanced):
 - HL-LHC can potentially observe a few of them: $H \rightarrow \gamma + \rho$, $Z \rightarrow \gamma + \omega$, $Z \rightarrow \gamma + J/\psi$
 - FCC-ee can discover about 50% of such experimentally unobserved decays
 - FCC-hh can produce most of those decays channels

Backup

Summary

- Comprehensive survey of the theoretical & experimental status of more than 150 rare and exclusive few-body decays of the 4 heaviest SM particles (H,Z,W,t)
 - Sensitive to BSM physics scenarios (FCNC), backgrounds to many BSM decays (H,Z \rightarrow ALPs, gravitons, dark γ , ...), and study of pQCD factorization/meson formation.
- Up-to-date collection of TH BRs and EXP limits from the literature.
 - Current LHC limits for 44 decays.
- Calculation of new rare decay channels: radiative leptonium, exclusive Higgs FCNC decays, Z boson 3-body decays, semiexclusive t \rightarrow b-quark +m, ...
 - H, Z \rightarrow leptonium + γ decays: Tiny. Very hard to measure.
- Estimation of reachabilities of HL-LHC, FCC-ee/FCC-hh observations (if not BSM-enhanced):
 - HL-LHC can potentially observe a few of them: $H \rightarrow \gamma + \rho$, $Z \rightarrow \gamma + \omega$, $Z \rightarrow \gamma + J/\psi$
 - FCC-ee can discover about 50% of such experimentally unobserved decays
 - FCC-hh can produce most all those decays channels

Exclusive Higgs decays $H \rightarrow meson + meson$

						Exp.	limits	Produ	cible at				
$\mathrm{H} \rightarrow$	Х	+	Х	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh	_			
	ϕ	+	J/ψ	1.0 ×10 ⁻⁹	LC+LCDA [96]	-	-	×	\checkmark				
				$(5.8-6.0) \times 10^{-9}$	NRQCD+LDME [101]					$ H \rightarrow \phi + J/\psi$			
				1.7×10^{-10}	RQM [98]								
	J/ψ	+	J/ψ	2.1×10^{-10}	RQM [100]	$< 3.8 \times 10^{-4}$ [90]	$\lesssim 5.8\times 10^{-5}$	×	\checkmark	$H \rightarrow J/\psi + J/\psi$			
				$(5.9 \pm 2.3) \times 10^{-10}$	NRQCD/NRCSM [99]					$H \rightarrow I/a/r + a/r(2\mathbf{S})$			
				1.5×10^{-10}	LC+LCDA [96]					$\Pi \rightarrow J/\psi + \psi(2S)$			
	$\psi(2S)$	+	J/ψ	5.0 ×10 ⁻¹¹	-	$< 2.1 \times 10^{-3}$ [90]	$\lesssim 3.2\times 10^{-4}$	×	\checkmark	$H \rightarrow I/\psi + \Upsilon(1S)$			
	φ(20)		$\psi(2S)$	$(5.1 \pm 2.0) \times 10^{-11}$	NRQCD/NRCSM [99]	$< 3.0 \times 10^{-3}$ [90]	$\lesssim 4.5\times 10^{-4}$	×	\checkmark	$-$ 11 / 3/ φ + 1(13)			
	$B_c^{*\mp}$	+	$B_c^{*\pm}$	$(1.4 - 1.7) \times 10^{-10}$	RQM [97]	-	-	×	\checkmark	$H \rightarrow \psi(2S) + \psi(2S)$			Theoretical BR
Н→ .	B_c^{\mp}	+	B_c^{\pm}	$(2.0 - 3.0) \times 10^{-10}$	RQM [97]	_	-	×	\checkmark	$- \qquad \qquad$			Current limits
			J/ψ	$(2.7 - 3.6) \times 10^{-10}$	NRQCD+LDME [101]	_	_	×	1	$H \rightarrow B_{a}^{*\pm} + B_{a}^{*\mp}$			HL-LHC 14 TeV, 3 ab ⁻¹
			- / 7	1.6×10^{-11}	LC+LCDA [96]				•				FCC-ee, HZ (2.4 ab ⁻¹ /yr)
				$(8.5 - 9.2) \times 10^{-10}$	NRQCD+LDME [101]					$H \rightarrow B_c^{\pm} + B_c^{\mp}$			FCC-hh 100 TeV,30 ab ⁻¹
	$\Upsilon(1S)$	+		1.8×10^{-10}	RQM [98]								
			$\Upsilon(1S)$	2.3 ×10 ⁻⁹	RQM [100]	$< 1.7 \times 10^{-3}$ [90]	$\lesssim 2.6 \times 10^{-4}$	×	\checkmark	$H \to \Upsilon(1S) + \Upsilon(1S) +$			
				$(4.3 \pm 0.9) \times 10^{-10}$	NRQCD/NRCSM [99]								
				2.3 ×10 ⁻⁹	LC+LCDA [96]					$_{-}$ H \rightarrow T(2S) + T(2S)			
	$\Upsilon(2S)$	+	$\Upsilon(2S)$	$(1.0 \pm 0.2) \times 10^{-10}$	NRQCD/NRCSM [99]	-	-	×	v	$(Dc)\infty + (Dc)\infty + II$			
	$\Upsilon(3S)$	+	$\Upsilon(3S)$	$(5.7 \pm 1.2) \times 10^{-11}$	NRQCD/NRCSM [99]	-	-	×	~	$H \rightarrow I(35) + I(35)$			
	$\Upsilon(mS)$	+	$\Upsilon(nS)$		-	< 3.5×10 ⁻⁴ [90]	$\lesssim 1.5 \times 10^{-5}$ [56]	×	×	$-\mathbf{U} \rightarrow \mathbf{\gamma}(\mathbf{m}\mathbf{Q}) + \mathbf{\gamma}(\mathbf{m}\mathbf{Q})$			
										$\Pi \rightarrow I(\Pi S) + I(\Pi S)$			
										, r	5	10	15 2

- Theory BRs: O(10⁻⁹-10⁻¹¹). Exp. limits: O(10⁻³ 10⁻⁴).
- 5 channels searched-for. No (all) producible channels at FCC-ee (FCC-hh)
- Many predictions for double-QQbar from adding more contributing diagrams.

log(BR)

Rare Z decays

- Theory BRs: O(10⁻⁵ − 10⁻¹⁰). Exp. limits: O(10⁻² − 10⁻⁶).
- 2 channels searched for. 4 producible channels at FCC-ee.
- Recomputed/Updated with MG5@NLO here.
- All SM channels are unobservable at HL-LHC, but will be cleanly visible at FCC-ee

		Exclusiv Z → γ	ve Z deo + leptor	cays nium		\sim^{z}		⁺ℓ ⁻)0	~~~~	< compared with the second sec	Control Contro)ı
	$\mathcal{B}(Z \to (\ell^+$	$\ell^{-})_{0} + \gamma) = \frac{\alpha(0)^{4}\alpha}{9 \cdot 25}$ $\alpha(0)^{4}\alpha(0)$	$\frac{(m_Z)^2}{6 n^3} \frac{m_{\ell^+\ell^-}^2}{m_Z^2} \frac{\left(1\right)}{(m_Z)^2 m_Z^2}$	$(-4s_w^2)^2 ($	$\frac{8s_w^4 - 4s_w^2 + \Gamma_{ee}\Gamma_Z s_w^4 c_w^4}{\Gamma_{ee}\Gamma_Z s_w^4 c_w^4}$	$\frac{1}{m_{\rm Z}^2 - m_{\ell^+\ell^-}^2}$)				L y	
	$\mathcal{B}(Z \to (\ell^+))$	$\ell^{-})_{1} + \gamma) = \frac{\alpha(0) - \alpha(0)}{9 \cdot 256}$	$\frac{m_Z}{m^3} \frac{m_Z}{m_Z^4}$	Γ _{ee} I	$\Gamma_Z s_w^4 c_w^4$		$Z \rightarrow \gamma + (ee)_0$					1
				Ex	p. limits	Producible at	$Z \rightarrow \gamma + (\mu \mu)_0$					
$Z \rightarrow \gamma$ +	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	$Z \rightarrow \gamma + (\tau \tau)_0$				Theoretical B	R
	$(ee)_0$	4.7×10^{-23}	This work	_	_	×	$Z \rightarrow \gamma + (ee)_1$				HL-LHC 14 Te	eV, 3 ab ⁻¹ eV, 100 ab ⁻¹
	$(\mu\mu)_0$	2.0×10^{-18}	This work	_	-	×	$Z \rightarrow \gamma + (\mu \mu)_1$					
$7 \rightarrow \gamma +$	$(au au)_0$	5.7 $\times 10^{-16}$	This work	_	-	×	$Z \rightarrow \gamma + (\mu\mu)_1$					
	$(ee)_1$	7.3×10^{-21}	This work	_	-	×	$Z \rightarrow \gamma + (\tau \tau)_1$				-,,	
	$(\mu\mu)_1$	3.1×10^{-16}	This work	_	_	×	0	5	, 1	10	15 20	0 25 -log(BB)
	$(au au)_1$	8.9 $\times 10^{-14}$	This work	_	_	×	_					109(511)

- Tiny BRs: $O(10^{-14} 10^{-23})$. First time computed here.
- No channel searched-for. No producible channel at FCC-ee.
- Note: Leptonia are long-lived = LLP signature (displaced γ , e, μ vertices)

Exclusive W decays

- Exclusive W decays:
 - Similar mechanism to exclusive Z and H decays.
 - Provides cross-check of pQCD factorization models and info on open-flavour meson form factors.
 - Exclusive Z decays into:
 - γ + 1 charged meson

• Meson + charged meson

Exclusive W decays $W \rightarrow \gamma$ + meson

				Exp. limit	ts	Produ	cible at					
$W^{\mp} \rightarrow \gamma + $	X	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh					
	π^{\pm}	$(4.0 \pm 0.8) \times 10^{-9}$	SCET+LCDA [58]	< 1.9×10 ⁻⁶ [136, 137]	$\lesssim 2.9 \times 10^{-7}$	✓	✓	-				
	ρ^{\pm}	$(8.74 \pm 1.91) \times 10^{-9}$	SCET+LCDA [58]	< 5.2×10 ⁻⁶ [136]	$\lesssim 7.9\times 10^{-7}$	\checkmark	\checkmark					
	K^{\pm}	$(3.25 \pm 0.69) \times 10^{-10}$	SCET+LCDA [58]	$< 1.7 \times 10^{-6} [136]$	$\lesssim 2.6\times 10^{-7}$	×	\checkmark	. 🗖			!	
	$K^{*\pm}$	$(4.78 \pm 1.15) \times 10^{-10}$	SCET+LCDA [58]	-	_	×	\checkmark	$W \rightarrow \gamma + \pi^{\pm}$				
	D^{\pm}	$\left(1.4^{+0.5}_{-0.3} ight) \ imes 10^{-9}$	SCET+LCDA [58]	-	_	×	\checkmark	$W \rightarrow \gamma + \rho^{\pm}$				
		$(3.7^{+1.5}_{-0.8}) \times 10^{-8}$	SCET+LCDA [58]									
$W^{\mp} \rightarrow \gamma +$	D_s^{\pm}	4.7 ×10 ⁻⁹	NRQCD+LDME [138]	$< 6.5 \times 10^{-4}$ [115]	$\lesssim 1.2 \times 10^{-5}$	\checkmark	\checkmark	$W \rightarrow \gamma + K^{\pm}$]		
		3.4 ×10 ⁻⁹	LC+LCDA [138]					$W \rightarrow \alpha + K^{*\pm}$		The Curr	oretical BR	
	D*±	8.9 ×10 ⁻¹⁰	NRQCD+LDME [138]			~		$- vv \rightarrow \gamma + ix$		 HL-I	LHC 14 TeV, 3 ab	-1
	D_s	3.4 ×10 ⁻⁹	LC+LCDA [138]	_	_	[°]	×	$W \rightarrow \gamma + D^{\pm}$		- FCC	C-ee, W ⁺ W [−] (4.8 a	b ⁻¹ /yr)
		$\left(1.6^{+0.8}_{-0.6} ight) \ imes 10^{-12}$	SCET+LCDA [58]					$W \rightarrow + D^+$		FCC	-nn 100 iev,30 at	
	B^{\pm}	$\left(2.6^{+3.1}_{-1.3} ight) \ imes 10^{-12}$	HQET+LCDA [139]	-	-	×	\checkmark	$vv \rightarrow \gamma + D_s^-$				
		$\left(2.0^{+2.5}_{-0.8} ight)\ imes 10^{-12}$	SCET+LCDA ^a [139]					$W \rightarrow \gamma + D_s^{*\pm}$				
								$W \rightarrow \gamma + B^{\pm}$				
								⊢ 0	5	 10	15	

- Theory BRs: O(10⁻⁸ − 10⁻¹²). Exp. limits: O(10⁻⁴ − 10⁻⁶)
- 4 channels searched-for.
- 3 (5) channels producible at FCC-ee (FCC-hh)

-loa(BR

Exclusive W decays W→ meson + meson

 $\Lambda\Lambda$

							Exp	. limits	Pro	ducible at			
$W^{\pm} \rightarrow$	X	+	X	Branching fraction	Framework		2023	HL-LHC	FCC-ee	FCC-hh			
			D±	2.1×10^{-12}	NRCSM+LCDA [140)]			~	/			
			D_s	$(1.3^{+0.3}_{-0.2}) \times 10^{-11}$	LC+LCDA [140]		-	-	<u></u>	v			
	40		$D^{*\pm}$	3.0 ×10 ⁻¹²	NRCSM+LCDA [140)]	_	_	×				
			D_{3}	$(1.5^{+0.4}_{-0.2}) \times 10^{-11}$	LC+LCDA [140]								
				2.6×10^{-12}	NRQCD+LDME [138	8]							
			D_s^{\pm}	2.1×10^{-12}	NRCSM+LCDA [140)]	-	-	×	\checkmark			
	1/4			$(1.8^{+0.4}_{-0.2}) \times 10^{-11}$	LC+LCDA [140]								
	J/ψ	т		1.7×10^{-12}	NRQCD+LDME [138	8]							
			$D_s^{*\pm}$	3.0×10^{-12}	NRCSM+LCDA [140)]	-	-	×	\checkmark			
				$(2.0^{+0.5}_{-0.2}) \times 10^{-11}$	LC+LCDA [140]								
	4(28)		D_s^{\pm}	5.1 ×10 ⁻¹¹	NRQCD+LDME [138	8]	-	-	×	\checkmark			
	$\psi(23)$	Ŧ	$D_s^{*\pm}$	7.4 ×10 ⁻¹²	NRQCD+LDME [138	8]	-	-	×	\checkmark			
				9.4 ×10 ⁻¹⁴	NRQCD+LDME [138	3]							
			D_s^{\pm}	4.7×10^{-14}	NRC		D_s^{\pm}	(2.4410)	×10 ⁻¹³	NRCSM+LCDA [140]	-	-	×
				$(7.1^{+3.5}_{-3.1}) \times 10^{-13}$	LC+I h _c	+		(2.1+1.0)	×10 ⁻¹²	NBCSM LCDA [140]			
	χ_{c0}	+		1.2 ×10 ⁻¹³	NRQ		$D_s^{*\pm}$	(2.0)	$\times 10^{-12}$	I C+I CDA [140]	-	-	×
			$D_s^{*\pm}$	8.1×10^{-14}	NRC			3.9	×10 ⁻¹⁴	NROCD+LDME [138]			
				$(8.0^{+3.7}_{-3.1}) \times 10^{-13}$	LC+I		D_s^{\pm}	9.6	$\times 10^{-14}$	NRCSM+LCDA [140]	-	_	×
W/+ .				2.0 ×10 ⁻¹³	NRQ			$(1.4^{+0.6}_{-0.5})$	$\times 10^{-12}$	LC+LCDA [140]			
w →			D_s^{\pm}	2.9×10^{-13}	NRC	2 +		3.9	$\times 10^{-14}$	NRQCD+LDME [138]			
				$(7.8^{+3.4}_{-3.0}) \times 10^{-12}$	LC+I		$D_s^{*\pm}$	1.4	$\times 10^{-13}$	NRCSM+LCDA [140]	-	-	×
	χ_{c1}	+		2.0 ×10 ⁻¹³	NRQ			$(1.6^{+0.7}_{-0.6})$	×10 ⁻¹²	LC+LCDA [140]			
			$D_s^{*\pm}$	4.0 ×10 ⁻¹³	NRCS B _s ⁰	+	$B_c^{*\pm}$	2.0	×10 ⁻¹²	NRQCD+LDME [138]	-	-	×
				$(8.8^{+3.5}_{-3.1}) \times 10^{-12}$	LC+I		B_c^{\pm}	2.5	×10 ⁻¹²	NRQCD+LDME [138]	-		×
				1.4 ×10 ⁻¹³	NRCS B [*] _s	+	$B_c^{+\pm}$ B^{\pm}	2.7	×10 ⁻¹²	NRQCD+LDME [138]	_	-	Ŷ
			1) [±]				D_c	2.7	A10	INCOCD-EDME [130]	-	_	· · · ·

- Theory BRs: $O(10^{-11} 10^{-14})$. No existing exp. limit
- No channels searched-for anywhere.
- No (13) channels producible at FCC-ee (FCC-hh)

Rare top decays

• The FCNC top-quark decays:

 $t \rightarrow Zq, t \rightarrow c\gamma$, and $t \rightarrow cg$;

Highly suppressed in the SM (loops, GIM), but significantly enhanced in BSM models

• Three-body top decays: possible thanks to the large top mass \rightarrow multiple onshell heavy boson decays kinematically accessible t

- Semi-exclusive top quark decays:
 - $t \rightarrow q$ +meson: alternative m_{top} determination?

- Theory BRs: $O(10^{-6} 10^{-13})$. No existing exp. limits
- 4 channels searched-for. 1 (3) channels producible at FCC-ee (FCC-hh)
- <u>Note</u>: $t \rightarrow Z+W+b$ (91.2+80.4+4. GeV $\approx m_{top}$) has "large" BR: 2.10⁻⁶

Semi-exclusive decays $t \rightarrow meson + c/u quark$

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							Exp	o. limits	Produc	vible at
$ t \rightarrow \begin{cases} \overline{B}^{0} + \frac{c}{u} \frac{(2.1^{+2.1}_{-1.1}) \times 10^{-6}}{(4.0^{4.0}_{-2.0}) \times 10^{-5}} & NRQCD+LDME [25] & - & - & & \\ \hline u & (4.0^{4.0}_{-2.0}) \times 10^{-5} & NRQCD+LDME [25] & - & - & & \\ \hline \overline{B}^{0}_{s} + \frac{c}{u} \frac{(4.0^{4.0}_{-2.0}) \times 10^{-5}}{(2.1^{+2.1}_{-1.1}) \times 10^{-6}} & NRQCD+LDME [25] & - & - & & \\ \hline T^{(1S)}_{s} + \frac{c}{u} \frac{(4.3 \times 10^{-10}) NRQCD+CSM [155]}{(6.4 \pm 1.3) \times 10^{-10}} & NRQCD+CSM [155] & - & - & & \\ \hline T^{(2S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+CSM [155]} & - & - & & \\ \hline T^{(2S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+CSM [155]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 \times 10^{-10}) NRQCD+LDME [25]} & - & - & & \\ \hline T^{(3S)}_{s} + \frac{c}{(2.1 $	$t \rightarrow$	X	+	Y	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh
$t \rightarrow \begin{cases} B & + & u & (4.0^{+4.0}_{-2.0}) \times 10^{-5} & NRQCD+LDME [25] & - & - & & \\ \hline B_s^0 & + & c & (4.0^{+4.0}_{-2.0}) \times 10^{-5} & NRQCD+LDME [25] & - & - & & \\ \hline u & (2.1^{+2.1}_{-1.1}) \times 10^{-6} & NRQCD+LDME [25] & - & - & & \\ \hline \gamma(1S) & + & c & 4.3 \times 10^{-10} & NRQCD+CSM [155] \\ \hline \gamma(1S) & + & c & (6.4 \pm 1.3) \times 10^{-10} & NRQCD+COM [154] \\ \hline \gamma(2S) & + & c & 2.1 \times 10^{-10} & NRQCD+CSM [155] & - & - & \times & \\ \hline \gamma(2S) & + & c & 2.1 \times 10^{-10} & NRQCD+CSM [155] & - & - & \times & \\ \hline \gamma(3S) & + & c & 1.6 \times 10^{-10} & NRQCD+CSM [155] & - & - & \times & \\ \hline \gamma(nS) & + & c/u & (1.7 - 5.3) \times 10^{-10} & NRQCD+CSM [155] & - & - & \times & \\ \hline \gamma(nS) & + & c/u & (1.5 - 2.1) \times 10^{-9} & NRQCD+LDME [25] & - & - & \times & \\ \hline \gamma(nS) & + & c/u & (1.5 - 2.1) \times 10^{-9} & NRQCD+LDME [25] & - & - & \times & \\ \hline u & (1.9^{+0.2}_{-0.1}) \times 10^{-11} & NRQCD+LDME [25] & - & - & \times & \\ \hline \gamma(nS) & + & c/u & (1.5 - 2.1) \times 10^{-9} & NRQCD+LDME [25] & - & - & \times & \\ \hline \end{pmatrix}$		<u></u> 0		с	$\left(2.1^{+2.1}_{-1.1} ight) \ imes 10^{-6}$	NRQCD+LDME [25]	_	-	\checkmark	\checkmark
$ t \rightarrow \begin{cases} \overline{B}_{s}^{0} + \frac{c}{u} \frac{(4.0^{+4.0}_{-2.0}) \times 10^{-5}}{(2.1^{+1.1}_{-1.1}) \times 10^{-6}} & NRQCD+LDME [25] \sqrt{\sqrt{-1}} \\ u \frac{(2.1^{+2.1}_{-1.1}) \times 10^{-6}}{(2.1^{+2.1}_{-1.1}) \times 10^{-6}} & NRQCD+LDME [25] \sqrt{-1} \\ \hline \\ \gamma(15) + \frac{c}{(6.4 \pm 1.3) \times 10^{-10}} & NRQCD+CSM [155]}{(6.4 \pm 1.3) \times 10^{-10}} & NRQCD+COM [154] \\ \hline \\ \gamma(2s) + \frac{c}{(1.0 - 1.5) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(2s) + \frac{c}{(1.0 - 1.5) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(3s) + \frac{c}{(1.0 - 1.6) \times 10^{-10}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 1.6) \times 10^{-10}} & NRQCD+CSM [155] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 1.6) \times 10^{-10}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} & NRQCD+LDME [25] \times \sqrt{-1} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} \\ \hline \\ \gamma(nS) + \frac{c}{(1.0 - 0.2) \times 10^{-9}} \\ \hline \\ \gamma(nS) + \frac{c}{(1.$		В	+	и	$(4.0^{+4.0}_{-2.0}) \times 10^{-5}$	NRQCD+LDME [25]	_	_	\checkmark	\checkmark
$\mathbf{t} \rightarrow \begin{array}{ccccccccccccccccccccccccccccccccccc$		$\overline{\mathbf{D}}^0$.1.	С	$(4.0^{+4.0}_{-2.0}) \times 10^{-5}$	NRQCD+LDME [25]	_	-	\checkmark	\checkmark
$t \rightarrow \begin{cases} r_{(1S)} + \\ r_{(1S)} + \\ \hline c \\ \hline c/u \\ r_{(2S)} + \\ \hline c/u \\ r_{(10-1.5)} \times 10^{-9} \\ r_{(2S)} + \\ \hline c/u \\ r_{(10-1.5)} \times 10^{-9} \\ r_{(10} \\ r_{(1.7-5.3)} \times 10^{-10} \\ r_{(1.7-5.3)} \times 10^{-10} \\ r_{(1.7-5.3)} \times 10^{-10} \\ r_{(1.7-5.3)} \times 10^{-10} \\ r_{(1.7-5.3)} \\ r_{(10)} \\ r_{(1.7-5.3)} \\ $		B_s	т	и	$\left(2.1^{+2.1}_{-1.1} ight)~ imes 10^{-6}$	NRQCD+LDME [25]	_	-	\checkmark	\checkmark
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				C	4.3 ×10 ⁻¹⁰	NRQCD+CSM [155]	_	_	¥	
$\mathbf{t} \rightarrow \frac{c/u (1.0 - 1.5) \times 10^{-9} \text{NRQCD+LDME [25]} - - \mathbf{X} }{\Upsilon(2S) + \frac{c}{c/u} (1.7 - 5.3) \times 10^{-10} \text{NRQCD+CSM [155]} - - \mathbf{X} }{c/u (1.7 - 5.3) \times 10^{-10} \text{NRQCD+LDME [25]} - - \mathbf{X} }}{\Upsilon(3S) + \frac{c}{c/u} (2.7 - 3.8) \times 10^{-10} \text{NRQCD+LDME [25]} - - \mathbf{X} }{c/u (2.7 - 3.8) \times 10^{-10} \text{NRQCD+LDME [25]} - - \mathbf{X} }}$ $\frac{c}{\Upsilon(nS) + \frac{c}{u} (1.5 - 2.1) \times 10^{-9} \text{NRQCD+LDME [25]} - - \mathbf{X} }{u (1.9^{+0.2}_{-0.1}) \times 10^{-9} \text{NRQCD+LDME [25]} - - \mathbf{X} }$		$\Upsilon(1S)$	+	C	$(6.4 \pm 1.3) \times 10^{-10}$	NRQCD+COM [154]		_	^	•
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$t \rightarrow$			c/u	$(1.0 - 1.5) \times 10^{-9}$	NRQCD+LDME [25]	_	-	×	\checkmark
$\frac{1}{1} \frac{1}{2} \frac{1}{1} \frac{1}$	ι —	Y(2S)	т	с	2.1×10^{-10}	NRQCD+CSM [155]	-	-	×	\checkmark
$\frac{\Upsilon(3S)}{\Upsilon(3S)} + \begin{array}{c c c c c c c } c & 1.6 \times 10^{-10} & \text{NRQCD+CSM} [155] & - & - & \textbf{X} & \checkmark \\ \hline c/u & (2.7 - 3.8) \times 10^{-10} & \text{NRQCD+LDME} [25] & - & - & \textbf{X} & \checkmark \\ \hline c & (1.9^{+0.2}_{-0.1}) \times 10^{-9} & \text{NRQCD+LDME} [25] & - & - & \textbf{X} & \checkmark \\ \hline \Upsilon(nS) + & c/u & (1.5 - 2.1) \times 10^{-9} & \text{NRQCD+LDME} [25] & - & - & \textbf{X} & \checkmark \\ u & (1.9^{+0.2}_{-0.1}) \times 10^{-11} & \text{NRQCD+LDME} [25] & - & - & \textbf{X} & \checkmark \\ \end{array}$		1(25)	т	c/u	$(1.7 - 5.3) \times 10^{-10}$	NRQCD+LDME [25]	-	-	×	\checkmark
$\frac{c/u}{r(nS) + c/u} \frac{(2.7 - 3.8) \times 10^{-10}}{(1.9^{+0.2}_{-0.1}) \times 10^{-9}} \frac{NRQCD + LDME [25]}{NRQCD + LDME [25]} - \frac{-}{NRQCD + LDME [25]} - \frac$		Y(35)	+	с	1.6×10^{-10}	NRQCD+CSM [155]	-	-	×	\checkmark
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1(55)	Т	c/u	$(2.7 - 3.8) \times 10^{-10}$	NRQCD+LDME [25]	-	-	×	\checkmark
$\begin{split} \Upsilon(nS) &+ c/u & (1.5-2.1) \times 10^{-9} & \text{NRQCD+LDME} [25] &- &- & \times & \checkmark \\ & u & (1.9^{+0.2}_{-0.1}) \times 10^{-11} & \text{NRQCD+LDME} [25] &- &- & \times & \checkmark \end{split}$				с	$\left(1.9^{+0.2}_{-0.1} ight)~ imes 10^{-9}$	NRQCD+LDME [25]	-	-	×	\checkmark
$u = (1.9^{+0.2}_{-0.1}) \times 10^{-11}$ NRQCD+LDME [25] × ×		$\Upsilon(nS)$	+	c/u	$(1.5 - 2.1) \times 10^{-9}$	NRQCD+LDME [25]	-	-	×	\checkmark
				и	$\left(1.9^{+0.2}_{-0.1} ight)\ imes 10^{-11}$	NRQCD+LDME [25]	-	_	×	\checkmark

- Theory BRs: $O(10^{-5} 10^{-11})$. No existing exp. limits
- No channel searched for. 4 (9) visible channels at FCC-ee (FCC-hh)
- <u>Note</u>: $t \rightarrow B+c/u$ -quark have "large" BR: $4 \cdot 10^{-5}$

Semi-exclusive decays $t \rightarrow meson + b quark$

						Exp. limits		Produci	ble at	$t \rightarrow h \perp \pi^+$		
$t \rightarrow$	X	+	Y	Branching fraction	Framework	2023	HL-LHC	FCC-ee	FCC-hh	0 7 0 1 1		
	π^+	+	b	1.3 ×10 ⁻⁷	EFT+LCDA This work	_	_	×	\checkmark	$t \rightarrow b + \rho^+$		
	$ ho^{\scriptscriptstyle +}$	+	b	6.4 ×10 ⁻⁸	EFT+LCDA This work	_	_	×	\checkmark	$t \rightarrow b + K^+$		
	K^+	+	b	2.9×10^{-9}	EFT+LCDA This work	-	_	×	\checkmark	$t \rightarrow b + K^{*+}$		
	K^{*+}	+	b	2.7 ×10 ⁻⁹	EFT+LCDA This work	_	_	×	\checkmark	0 7 0 7 11		
$t \rightarrow$	D^+	+	b	1.5×10^{-9}	EFT+LCDA This work	_	_	×	\checkmark	$t \rightarrow b + D^+$		Theoretical DD
	D^{*+}	+	b	2.3×10^{-9}	EFT+LCDA This work	-	-	×	\checkmark	$t \rightarrow b + D^{*+}$		Current limits
ι→	D_s^+	+	b	3.4×10^{-8}	EFT+LCDA This work	-	-	×	\checkmark	$t \rightarrow b + D^+$		HL-LHC 14 TeV, 3 ab ⁻¹
	D_s^{*+}	+	b	5.1 $\times 10^{-8}$	EFT+LCDA This work	-	-	×	\checkmark	$t \rightarrow 0 + D_s^+$	■	 FCC-hh 100 TeV,30 ab⁻¹
	B^+	+	b	1.1 $\times 10^{-13}$	EFT+LCDA This work	_	-	×	×	$t \rightarrow b + D_s^{*+}$		
	B^{*+}	+	b	9.8 $\times 10^{-14}$	EFT+LCDA This work	_	_	×	×	$t \rightarrow h + B^+$		_
	B_c^{*+}	+	b	5.5 ×10 ⁻¹¹	EFT+LCDA This work	-	-	×	\checkmark	0 7 D T D		
	B_c^+	+	b	5.7 ×10 ⁻¹¹	EFT+LCDA This work	-	_	×	\checkmark	$t \rightarrow b + B^{*+}$		
										$t \rightarrow b + B_c^{*+}$		
										$t \rightarrow b + B_c^+$		

- Theory BRs: $O(10^{-7} 10^{-14})$. No existing exp. limits
- No channel searched for. No (10) visible channels at FCC-ee(FCC-hh)
- First time those decays have been estimated.

20

-log(BR)

15

10

5

0

Outlook

Paper (~50 pages) in preparation...

Rare and exclusive few-body decays of the Higgs, Z, W bosons, and the top quark

David d'Enterria^{1,*} and Van Dung Le^{2,†}

¹CERN, EP Department, CH-1211 Geneva, Switzerland ²University of Science - Ho Chi Minh National University, Vietnam (Dated: October 17, 2023)

We hope it motivates people (LHC, FCC-ee) to perform new BSM searches... (and find new physics ;-)) We perform an extensive survey of rare and exclusive few-body decays —defined as those with two or three final-state particles, and branching fractions $\mathcal{B} \leq 10^{-5}$ — of the Higgs, Z, and W bosons, and the top quark. Such rare decays can probe physics beyond the Standard Model (BSM), may constitute a background for possible decays into new BSM particles, and/or provide precise information on quantum chromodynamics factorization with small nonperturbative corrections. First, we collect and tabulate the \mathcal{B} values calculated for more than 150 decay channels of the four heaviest elementary particles, indicating the current experimental limits in their observation. Second, we compute for the first time H and Z boson decays into leptonium-plus-photon, very rare H boson decays to photons and/or neutrinos, and radiative H and Z quark-flavour-changing exclusive decays, while revisiting and updating predictions for a few other rare Z boson and top quark partial widths. Third, the feasibility of measuring each of these unobserved decays is estimated for proton-proton collisions at the high-luminosity Large Hadron Collider (HL-LHC), and for e⁺e⁻ and p-p collisions at the future circular collider (FCC).

I. INTRODUCTION

With the discovery of the Higgs boson at the CERN Large Hadron Collider (LHC) ten years ago [1, 2], the full particle content of the Standard Model (SM) of particle physics has become fully fixed. Among the 17 existing elementary particles (6 quarks, 6 leptons, 4 gauge bosons, and the scalar boson), the top quark, the Higgs and the electroweak (W, Z) bosons are the most massive ones. Studying in detail the properties of the four heaviest elementary particles, with masses around the electroweak scale $\Lambda_{EW} \approx O(100 \text{ GeV})$, is an important priority in precision SM studies and in searches for new physics beyond it (BSM). At the LHC, the large center-of-mass (c.m.) energies and integrated luminosities (up to $\mathcal{L}_{int} = 3 \text{ ab}^{-1}$ expected at the end of the high-luminosity, HL-LHC, phase) [3] available in