Drell-Yan at the LHC, towards FCC-ee

Alessandro Vicini
CERN and University of Milano, INFN Milano

7th FCC-ee Physics Workshop, Annecy

The inclusive production of a fermion pair is a standard candle process both
at LHC (Drell-Yan) $\quad \sigma\left(p p \rightarrow \mu^{+} \mu^{-}+X\right)$
and
at FCC-ee $\quad \sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}+X\right)$
the lowest order process, at partonic level, is in both cases $f \bar{f} \rightarrow \mu^{+} \mu^{-}$: they share very similar computational challenges

The evaluation of NNLO-EW corrections is needed not only at FCC-ee, but already at the LHC !

Motivation: statistical precision from small to large fermion-pair invariant masses
Statistical errors

FCC-ee $\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}+X\right)$
arXiv:2206.08326

sqrt(S) (GeV)	luminosity (ab-1)	$\sigma(\mathrm{fb})$	$\%$ error
91	150	2.1759510^{6}	0.0002
240	5	1870.84 ± 0.612	0.03
365	1,5	787.74 ± 0.725	0.09

Theoretical systematics

LHC and HL-LHC $\sigma\left(p p \rightarrow \mu^{+} \mu^{-}+X\right)$
arXiv:2106.II953

bin range (GeV)	$\%$ error $140 \mathrm{fb}^{-1}$	\% error $3 \mathrm{ab}^{-1}$
$91-92$	0.03	610^{-3}
$120-400$	0.1	0.02
$400-600$	0.6	0.13
$600-900$	1.4	0.30
$900-1300$	3.2	0.69

proton PDFs

increasingly large QCD, QCD-EW and EW corrections

EW input parameters large QED corrections increasingly large EW corrections

Are we able to reach the 0.1% precision throughout the whole invariant mass range?
The Drell-Yan case poses the same challenges relevant for FCC-ee

Motivation: impact of higher dimension operators, as a function of the invariant mass

The parameterisation of BSM physics in the SMEFT language can be probed by studying the impact of higher dimension operators as a function of energy.

Deviations from the SM prediction require the SM prediction to be at the same precision level of the data i.e. (sub) per mille level

Motivation: interplay of precision measurements at Z resonance and low- and high-energy
The very high precision determination of EW parameters at the Z resonance is a cornerstone of the whole precision program but there is more...

The SM predicts the running of its parameters, like e.g. $\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$, with non-trivial features and in turn complementary sensitivity to BSM physics
low-energy (sub-GeV) determinations (P2 in Mainz, Møller at JLab) high-energy (TeV) determinations (CMS, ATLAS)
offer a stringent test of the SM complementary to the results at the Z resonance

The running of an MSbar parameter is completely assigned once boundary and matching conditions are specified

Motivation: exploiting simultaneously Z-resonance and high-mass precision
The sensitivity to determine the running of $\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$ at the LHC has been demonstrated in arXiv: 2302.10782

A dedicated POWHEG NCDY version has been implemented for this study, with $\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$ among the input parameters, with NLO-EW renormalisation.
 (when fitting the distributions to the data, we can only vary the input parameters of the calculation)

Motivation: exploiting simultaneously Z-resonance and high-mass precision
The sensitivity to determine the running of $\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$ at the LHC
 has been demonstrated in arXiv: 2302.I0782

A dedicated POWHEG NCDY version has been implemented for this study, with $\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$ among the input parameters, with NLO-EW renormalisation.
(when fitting the distributions to the data, we can only vary the input parameters of the calculation)

The determinations of the $-\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$ running

- Wilson coefficients of higher-dimension operators in SMEFT
share a problem:
Missing SM higher-order effects, not related to the coupling definition, may be reabsorbed in these fitting parameters faking a BSM signal
examples: all the QCD corrections, the EW Sudakov logs, the corrections contributing to the electric charge running \rightarrow we need the best SM description of the cross sections, before we move to the interpretation phase in terms of couplings

NNLO-EW corrections (with UV renormalisation) are needed both at the LHC and FCC-ee to tame this potential problem

Factorisation theorems and the cross section in the partonic formalism

Particles $P_{1,2}$ can be protons (\rightarrow Drell-Yan @ LHC) or leptons (\rightarrow FCC-ee)

The partonic content of the scattering particles can be expressed in terms of PDFs
proton PDFs:ABM, CTI8, MSHT,NNPDF,... lepton PDFs: Frixione et al.arXiv:I91I.I2040
The partonic scattering can be computed in perturbation theory,
exploiting the theoretical progress in QCD, in the understanding of its IR structure
Factorisation theorems guarantee the validity of the above picture up to power correction effects

Neutral current Drell-Yan in a fixed-order expansion

Hamberg, Matsuura, van Nerveen, (1991) Anastasiou, Dixon, Melnikov, Petriello, (2003) Catani, Cieri, Ferrera, de Florian, Grazzini (2009)
R.Bonciani, L.Buonocore, M.Grazzini, S.Kallweit, N.Rana, F.Tramontano, AV, (202I)
T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, (2022)
F.Buccioni, F.Caola, H.Chawdhry, F.Devoto, M.Heller, A.von Manteuffel, K.Melnikov, R.Röntsch, C.Signorile-Signorile, (2022)

The need for a combined resummation of QCD and QED contributions, enhanced by logarithms of the relevant kinematical variables (e.g. $p_{\perp}^{\ell \ell}$, threshold variables,...) is crucial for the description of several observables. It deserves a separate talk.

Here we focus on the description of the tails, above the Z resonance.

The N3LO corrections clearly stabilise the dependence on the choice of the QCD scales

The mixed NNLO QCD-EW corrections feature a $\mathrm{O}(-\mathrm{I} .5 \%)$ correction, up to I TeV of invariant mass missing in any additive combination available in simulation tools

At large invariant mass, QCD and EW show a factorisation pattern.

Next to the resonance, kinematic effects are important for a proper description

Need for a full NNLO-EW calculation to reduce the uncertainties to sub-percent level The NNLO-EW corrections to scattering processes are still today one of the frontiers in QFT

The NNLO-EW corrections could modify in a non-trivial way the large-mass/momentum tails of the distributions Large logarithmic corrections (EW Sudakov logs) appear in the virtual corrections
At two-loop level, we have up to the fourth power of $\log \left(s / m_{V}^{2}\right)$
The size of the constant term is not trivial

corrections to $e^{+} e^{-} \rightarrow q \bar{q}$ due to EW Sudakov logs

Towards the NNLO-EW corrections to $\sigma\left(f \bar{f} \rightarrow \mu^{+} \mu^{-}+X\right)$

- The evaluation of NLO corrections (QCD and EW) can be accomplished with automatic tools
- At NNLO level different conceptual and technical problems arise:
- evaluation of the 2-loop virtual amplitudes
increasing complexity depending on the number of internal massive lines (\# of energy scales) one of the main bottlenecks so far

- phase-space integration of double-real and real-virtual contributions reaching 0.1% precision is challenging (subtraction techniques)

Towards the NNLO-EW corrections to $\sigma\left(f \bar{f} \rightarrow \mu^{+} \mu^{-}+X\right)$
The NNLO QCD-EW corrections to Drell-Yan are an excellent playground for many of these problems T.Armadillo, R.Bonciani, S.Devoto N.Rana,,AV, arXiv:220I.0I754
\rightarrow in turn, directly relevant for $e^{+} e^{-} \rightarrow q \bar{q}+X$

STRUCTURE OF A LOOP COMPUTATION

courtesy of Simone Devoto

The double virtual amplitude: generation of the amplitude

$$
\mathscr{M}^{(0,0)}(q \bar{q} \rightarrow l \bar{l})=
$$

$\mathscr{M}^{(1,1)}(q \bar{q} \rightarrow l \bar{l})=O(1000)$ self-energies $+\mathrm{O}(300)$ vertex corrections $+\mathrm{O}(\mathrm{I} 30)$ box corrections + Iloop \times Iloop (before discarding all those vanishing for colour conservation, e.g. no fermonic triangles)

The double virtual amplitude: reduction to Master Integrals

$$
2 \operatorname{Re}\left(\mathscr{M}^{(1,1)}\left(\mathscr{M}^{(0,0)}\right)^{\dagger}\right)=\sum_{i=1}^{N_{M I}} c_{i}(s, t, m ; \varepsilon) \mathscr{T}_{i}(s, t, m ; \varepsilon)
$$

The coefficients c_{i} are rational functions of the invariants, masses and of ε
Their size can rapidly "explode" in the GB range
\rightarrow careful work to identify the patterns of recurring subexpressions, keeping the total size in the $\mathrm{O}(\mathrm{I}-10 \mathrm{MB})$ range

The double virtual amplitude: reduction to Master Integrals

$$
2 \operatorname{Re}\left(\mathscr{M}^{(1,1)}\left(\mathscr{M}^{(0,0)}\right)^{\dagger}\right)=\sum_{i=1}^{N_{M I}} c_{i}(s, t, m ; \varepsilon) \mathscr{T}_{i}(s, t, m ; \varepsilon)
$$

```
The coefficients }\mp@subsup{c}{i}{}\mathrm{ are rational functions of the invariants, masses and of }
Their size can rapidly "explode" in the GB range
    careful work to identify the patterns of recurring subexpressions, keeping the total size in the O(I-IO MB) range
```

The Master Integrals \mathscr{F}_{i} satisfy a system of first order linear differential equations

The solution can be obtained in several cases in closed analytical form in terms of special functions (GPLs, elliptic functions) in general in semi-analytical form, via series expansions (with arbitrary precision) using codes like DiffExp, SeaSyde, AMFlow

The double virtual amplitude: reduction to Master Integrals

$$
2 \operatorname{Re}\left(\mathscr{M}^{(1,1)}\left(\mathscr{M}^{(0,0)}\right)^{\dagger}\right)=\sum_{i=1}^{N_{M I}} c_{i}(s, t, m ; \varepsilon) \mathscr{T}_{i}(s, t, m ; \varepsilon)
$$

```
The coefficients }\mp@subsup{c}{i}{}\mathrm{ are rational functions of the invariants, masses and of }
Their size can rapidly "explode" in the GB range
    careful work to identify the patterns of recurring subexpressions, keeping the total size in the O(|-| | MB) range
```


The Master Integrals \mathscr{F}_{i} satisfy a system of first order linear differential equations

```
The solution can be obtained in several cases in closed analytical form in terms of special functions (GPLs, elliptic functions)
in general in semi-analytical form, via series expansions (with arbitrary precision)
using codes like DiffExp, SeaSyde, AMFlow
```

The open question in view of 2-loop EW calculations with difficult 2-loop Master Integrals is the feasibility
of writing the differential equations in symbolic form \rightarrow if yes, then the semi-analytical solution is available for any integral The performance of such "solvers" can be optimised, in the most demanding cases with several internal masses

Evaluation of the Master Integrals by series expansions

T.Armadillo, R.Bonciani, S.Devoto, N.Rana, AV, 2205.03345

The Master Integrals satisfy a system of differential equations.
The Mls are replaced by formal series with unknown coefficients \rightarrow eqs for the unknown coefficients of the series.
DiffExp by M.Hidding, arXiv:2006.055 IO implements this idea, for real valued masses, with real kinematical vars.
But we need complex-valued masses of W and Z bosons (unstable particles) \rightarrow SeaSyde

We implemented the series expansion approach, for arbitrary complex-valued masses, working in the complex plane of each kinematical variable, one variable at a time

Complete knowledge about the singular structure of the MI can be read directly from the differential equation matrix

The solution can be computed with an arbitrary number of significant digits, but not in closed form \rightarrow semi-analytical

Towards the NNLO-EW corrections to $\sigma\left(f \bar{f} \rightarrow \mu^{+} \mu^{-}+X\right.$

- Additional ingredients are needed at NNLO EW, in the 2-loop virtual sector
- the complete implementation of the 2-loop EW renormalisation, in the complex mass scheme, using as input parameters precisely those that we plan to fit from the data (e.g. $\sin ^{2} \theta_{\text {eff }}^{\ell}$ or $\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$)
- a practical solution to handle the γ_{5} problem
- an IR subtraction scheme (possibly inherited from QCD) fully consistent with gauge invariance

Conclusions

- The NNLO EW corrections to the Drell-Yan processes will be needed to match the final HL-LHC precision Steady progress is pushing the frontier of NNLO calculations from QCD-EW to full EW
- These results will be the core of the calculations needed at the FCC-ee
to describe fermion-pair production in the whole energy range
- The availability of these corrections will establish the SM benchmark with precision comparable to the data
\rightarrow increase the significance of an observed deviation, as a function of energy \rightarrow relevant to SMEFT studies
- As a starting example, the extraction of $\sin ^{2} \hat{\theta}\left(\mu_{R}^{2}\right)$ at high-masses at the LHC shows
the potential biases induced by neglecting SM higher-order effects
\rightarrow any BSM study must be done on top of the best SM results (NNLO-EW?) to avoid fake conclusions

