Measurement of the Higgs width

Nicolas **Morange**, *IJCLab* FCC Physics workshop, 01/02/2024

Laboratoire de Physique des 2 Infinis

Introduction: Higgs width measurements

Higgs width in SM is small: ~4 MeV

- No direct measurement through lineshape in final state possible
 - LHC: resolution ~2-3 GeV
 - FCC: should be better, but not by 3 orders of magnitude !
- Indirect measurement at the LHC: off-shell Higgs production
 - Assumptions ! No Q² dependence of the Higgs couplings, as in the SM

• FCC-ee: total width measurement through couplings

Higgs recoil analysis

Very clean peak to fit !

In interim report

- Total ZH cross-section ⇒ absolute g₇ coupling
- Higgs mass measurement
- Study of hadronic decays

Higgs width measurement

Not been studied in details in the past few years

	HL-LHC (*)	FCC-ee
δΓ _Η / Γ _Η (%)	SM (**)	1.3
δg _{HZZ} / g _{HZZ} (%)	1.5	0.17
δgнww / gнww (%)	1.7	0.43
δg _{Hbb} / g _{Hbb} (%)	3.7	0.61
δg _{Hcc} / g _{Hcc} (%)	~70	1.21
δg _{Hgg} / g _{Hgg} (%)	2.5 (gg->H)	1.01
δg _{Hττ} / g _{Hττ} (%)	1.9	0.74
δg _{нµµ} / g _{нµµ} (%)	4.3	9.0
δg _{Hγγ} / g _{Hγγ} (%)	1.8	3.9
δднŧt / днŧt (%)	3.4	_
δg _{HZγ} / g _{HZγ} (%)	9.8	_
бдннн / дннн (%)	50	~40 (indirect)
BR _{exo} (95%CL)	$BR_{inv} < 2.5\%$	<1%

$$\frac{\sigma(ZH \to bb)\sigma(ZH \to WW^*)}{\sigma(\nu\nu H \to bb)\sigma(ZH)^2} \propto \Gamma_H$$

─ How do we get this ?

• Through $ZH \rightarrow ZZZ^*$ -

- Most straightforward
- Recoil analysis gives σ_{7H} hence g_7
- Then ZZZ* gives BR(ZZ⁺) hence Γ_{H}
- ~2-3% precision expected
- Through VBF
 - A bit more convoluted
 - Combine ZH cross-section, BR(bb), BR(WW*) at 240 GeV, and WW→H→bb at 365 GeV

 $\Gamma_H \propto -$

 $\sigma_{ZH,H(ZZ^*)}$

• 1-2% precision expected

Higgs width through $H \rightarrow ZZ^*$: channels

3 Z in the final state: lots of fun !

- Many decay channels to study !
 - II, vv, qq decays for each Z
 - Not always high statistics
- The 3 Z are not interchangeable:
 - "Recoil" Z vs "Higgs" Zs
 - $H \rightarrow ZZ^*$: on-shell vs off-shell Z

ZZZ^* decay	Number of events	Z combinatorics	Particle
type	for $L = 5 ab^{-1}$	(objects pairing)	combinatorics (jets)
Fully hadronic	~ 9000	hard +	hard +
Fully leptonic	~ 8	hard +	easy+
Mixed channels	~ 1500	easy+	easy
2 leptons, 4 jets	~ 2600	hard	hard
2 jets, 4 leptons	~ 250	hard	easy

Reminder: BR(H→ZZ*) = 2.6%

ZH→ZZZ*→llvvqq

Study of 3 of the "mixed" channels (Inès Combes internship, 2023)

- Fun final state: leptons, neutrinos, jets
 - 6 possible sub-channels
- Start by hand-crafting cuts to get used of the topology
- Then move to simple BDT to gain in precision

$ZH \rightarrow ZZZ^* \rightarrow llvvqq: signals and backgrounds$

- Signal: H→ZZ*
 - Cuts optimised for each sub-channel independently (dis-regarding other HZZ events for optimisation)
 - Then orthogonality between channels implemented by simple cuts

• Backgrounds:

- WW and ZZ
- Other Higgs decays
- Low BR($H \rightarrow ZZ^*$) makes the analysis a bit challenging !

Number of events for $L = 5ab^{-1}$						
$H(ZZ^*)$	ZZ^*) ZZ WW $H(WW^*)$ $H(bb)$ $H(\tau\tau)$					
26400	$6.8 imes 10^6$	82×10^6	215000	577000	63200	90 000

Technical remarks:

- Samples copied at IJCLab and processed on local server
 - Only fraction of ZZ and WW
- Overall great experience with FCCAnalysis

N. Morange (IJCLab)

FCC Physics Workshop, 01/02/2024

$ZH \rightarrow ZZZ^* \rightarrow llvvqq$: Example channel llvvqq

	Number of events for $L = 5ab^{-1}$							
	Selection	H(ZZ)	ZZ	WW	H(WW)	H(bb)	$H(\tau \tau)$	H(other)
Recoil Z→ll selection	Preselection (one $Z(ll)$)	229	450664	84592	13270	36466	3674	7114
	$N_{ m selected\ leptons}=2$	229	427481	84037	9942	34808	2806	7086
	$70 < m_{ll} < 105~{\rm GeV}$	221	303820	34760	9528	33580	2695	6842
	$123 < m_{\rm recoil} < 130~{\rm GeV}$	168	16552	5088	7204	25497	2023	5186
	$N_{\rm jet \ const \ Durham \ N=2}^{\rm mean} > 7$	155	14955	1065	6930	25497	1	5127
Target Z*→qq>	$10 < m_{jj} < 45 \text{ GeV}$	145	218	46	176	4	0	0
	$E_T^{\text{miss}} > 8 \text{ GeV}$	141	12	43	170	1	0	0
	$p_{jj} < 40 \mathrm{GeV}$	129	4	10	106	1	0	0

- Simple cut-based analysis already providing quite good results !
- Main background remaining: $H \rightarrow WW^*$ with $W \rightarrow \tau v$
 - Despite poor man's hadronic tau veto
 - Dedicated tau reconstruction algorithms would help a lot !
 - Would also allow to add Z→ττ channel !

$ZH \rightarrow ZZZ^* \rightarrow llvvqq$: going multivariate

- BDT architecture following example of $H \rightarrow$ hadrons classifier
 - Multiclass BDT using XGBoost (one output per signal / background)
 - Then combine outputs into an optimal discriminant for $H \rightarrow ZZ^*$

Leptonic variables	Jet variables	Neutrino variables	Mixed variables
m_{ll}	m_{jj},p_{jj}	E^{miss}	$m_{ m visible}$
$m_{ m recoil}$	$m_{ m recoil}$	$E_T^{ m miss}$	$m_{ll u u}$
$N_{\rm selected\ leptons}$	E_{j1}, E_{j2}	$p_z^{ m miss}$	$m_{jj u u}$
$N_{\text{leptons with } p>1}$	$ heta_{\mathrm{j}1}, heta_{\mathrm{j}2}$	$ heta^{\mathrm{miss}}$	$\theta_{jj/ll}$
$N_{\text{leptons with } p>2}$	$N_{\rm iet\ const}^{\rm mean}$		$\theta_{ll/\nu\nu}$
	$N_{ m iet\ const}^{ m min}$		
	$N_{ m iet\ const}^{ m max}$		

• Significant gains over cut-based in all 3 sub-channels

FCCAnalyses: FCC-ee Simulation (Delphes)

ZH->ZZZ*->llvvqq: results

• 4.6% precision achievable with only these 3 sub-channels !

δΓ/Γ (%)	llvvqq	llqqvv	vvllqq	combination
Cut-based	9.0	17	8.7	6.6
BDT	7.4	10.7	6.9	4.6

• Fully dominated by stat. uncertainties

Results robust wrt neutral hadron
energy resolution

Uncertainty in $\Gamma_H(\%)$					
Total	4.6%				
Statistics	4.5%				
$H(WW^*)$ normalisation (5%)	0.8%				
ZZ normalisation (10%)	0.2%				
WW normalisation (10%)	0.1%				

10

$ZH \rightarrow ZZZ^* \rightarrow llqqqq$

Surprises on the path

- Started by looking at $ZZ^* \rightarrow jets$ as larger BR
- Was meant to be a test bed for hadronic energy resolution:
 - Separation $Z \rightarrow jets$ from $W \rightarrow jets$

Number of events for $L = 5ab^{-1}$								
Selection	$H(ZZ^*)$	ZZ	WW	$H(WW^*)$	H(bb)	H(cc)	H(gg)	H(other)
Preselection (one $Z(ll)$)	801	419933	17753	12648	36443	1808	5119	2821
$N_{\rm selected\ leptons} = 2$	798	408700	17515	9784	34786	1791	5115	2320
$81 < m_{ll} < 101~{\rm GeV}$	717	260722	3558	8734	31289	1611	4602	2058
$124 < m_{\rm recoil} < 140~{\rm GeV}$	680	23358	1775	8279	29683	1530	4368	1945
$E_T^{\text{miss}} < 13 \text{ GeV}$	664	22045	73	5824	25797	1460	4348	634
$p_z^{\rm miss} < 15 { m ~GeV}$	659	16314	49	5651	25255	1443	4321	566
$110 < m_{jjjj} < 138 \text{ GeV}$	638	9051	8	5205	22927	1392	4259	208
$d_{34} > 60$	535	2840	8	4604	3930	231	2003	23

- First sets of cut reduces non-Higgs backgrounds a lot, but still small S/B
 - Next natural cuts should be on m₇ / m_{7*} ...

$ZH \rightarrow ZZZ^* \rightarrow llqqqq$

Surprises on the path

- Started by looking at $ZZ^* \rightarrow jets$ as larger BR
- Was meant to be a test bed for hadronic energy resolution:
 - Separation $Z \rightarrow jets$ from $W \rightarrow jets$

ZH→ZZZ*→llqqqq

Surprises on the path

- Started by looking at $ZZ^* \rightarrow jets$ as larger BR
- Was meant to be a test bed for hadronic energy resolution:
 - Separation $Z \rightarrow jets$ from $W \rightarrow jets$

- Issue is intrinsic: particles from the decay of (low energy) Z and Z* are mixed in the theta/phi plane
 - seems very tough for any jet finding algorithm
- Excellent boson mass resolution (4% at 45 GeV for jets) is actually irrelevant to separate H→ZZ*→jets from H→WW*

ZH-->ZZZ*-->llqqqq: further hiccups

- Still large backgrounds from H→bb/cc/gg
- d-cuts indicate they are 4-jets like topologies
- Checked on event displays that it's indeed the case

$ZH \rightarrow ZZZ^* \rightarrow IIqqqq$: hope for progress ?

- Implementation of BDT shows that there is still a lot to be gained in kinematics
 - Precision 12.4%
- Using flavour tagging to further classify the events should help
 - Esp. $H \rightarrow WW^*$ and $H \rightarrow bb$ backgrounds will be in different categories
- Other sub-channels, esp. qqqqll, might be easier
 - No very low E jet
 - Low-mass lepton pair should be quite characteristic of Z*→II
 - To be studied...

Optimal variable

Prospects for H \rightarrow ZZ^* measurements

We need to study (almost) ALL channels to get to the maximum precision

- Study of llvvqq channels well advanced already
 - 3 sub-channels to add. Expected sensitivities similar to channels studied so far
- Addition of 4-lepton channels
 - Low stats, but should be basically background-free
 - Sensitivity ~5%
- Further investigation of the 4-jets channels
 - Clear possibilities to make them relevant in the combination
- Other channels ?
 - 6-jets seems extremely difficult
 - vvqqqq channels ?

• 2-3% precision on $\Gamma_{\rm H}$ from H \rightarrow ZZ* measurement seems within reach !

Higgs width measurement as a research project:

• Many final states to explore

- Already with $ZH \rightarrow ZZZ^*$
- And even more with the measurement using VBF events
- The ultimate precision will come from the combination of all of them !
 - There is not a single channel that dominates the overall sensitivity

• Work for everyone

- Many channels are **easily accessible for newcomers**: other "mixed" channels, 4 lepton channels...
- Will benefit a lot from recent developments in e.g flavour tagging
- Width measurement in VBF is a **whole new project** to explore
- Add tau-ID and tau reconstruction would add quite a bit of stats, help to reduce backgrounds
 - and be beneficial to many other FCC analyses
- Hard problems for experts to solve: $ZZ \rightarrow 4$ jets reconstruction
- Given the diversity of final states, a good match to help defining **detector requirements**

Conclusions

- Precise measurement of the Higgs total width (without assumptions) is one of the main goals of FCC-ee
 - Impossible to achieve at hadron colliders
- End result will be a combination of $H \rightarrow ZZ^*$ measurement and of VBF cross-section
- Preliminary studies of H→ZZ* give confidence that expected precision can be met
 - Documented in <u>FCC note</u>
 - Would love to see new collaborators pickup from there and continue the study !

The FCC-ee Higgs dataset

- 1 million clean ZH events at 240 GeV
- (2 experiments)

Vector boson scattering

- Decent statistics (50k
- events) at 365 GeV Very complementary for many of the measuréments

