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Adaptable reconstruction is crucial for a systematic design optimization:
● No need for hand picked parameter tuning 
● Costly conventional implementation  
● Increased performance?

Problems that are similar:
● Calorimeters
● Tracking 
● Combining information from multiple subdetectors
● Images of cars

Adaptive reconstruction algorithms are working: Belle II, HGCAL, CERN 
CMS

ML for very adaptive reconstruction  
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The particle flow algorithm aims to identify the produced particles in a 
collision through the combination of the information from the 
entire detector and provide best combined energy/momentum 
resolution

● Hoping to achieve higher reconstruction performance: 
cluster merging, arbitration of track vs cluster energy

● Our approach is very adaptive to detector geometry 

● First step: focus on calorimeter clustering

ML for Particle Flow, a very adaptive reconstruction
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A Example of input data in the CLD detector



● Event generation:
○ Particle gun (10-15 particles) → O(7000) hits 
○ E ∊ [0.5, 50] GeV 
○ p, n, KL, π, e+-, γ
○ FullSim CLD 
○ Truth from gen [CalohitMCTruthLink]

● Training on 50k events (small dataset) 

Dataset  
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B Vertical cross 
section CLD [1]

A Example of event 
from training set



End-to-end approach 
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Input: 
● A set of hits from different 

sensors (coordinates, type 
of hit, energy, A)

● Each one node in the 
graph O(600) per particle

- Each object 1 
condensation point (CP)

- Repulsive +Attractive 
potentials for each CP

CP

Output:
● Coordinate in 

embedding space 
(3D>)

● Beta (q)
● Use clustering 

space to build 
showers

+ GNN



Results: 
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● The ML model has no energy correction applied
● Baseline is the sum of the hits energy



Results: 
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[10,12] GeV

adds to the confusion term, 
as track energy is the sum of 
both 

● The ML model has no energy 
correction applied

● Baseline is the sum of the hits energy



Results: 
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Neutral hadrons [0,6] GeV Sum hits

P
andora 

M
L 

● The ML model has no energy correction applied



● Investigating Machine Learning based tracking 
for the IDEA detector (in addition to the 
conventional tracking)

● Simulating events with Pythia + ddsim + digi
● Dataset inputs of DCH:

○ Wire geometry:
■ Layer, superlayer
■ Stereo angle
■ → Coordinates

○ Hit:
■ Distance along the wire
■ Distance to the wire

● Hits from the vertex detector
● Exploiting GNN/ Point Cloud architectures 

Pattern recognition for the IDEA Drift Chamber
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Top: Drift 
Chamber  [1] 

Bottom: example 
event from full 

sim



Clustering Color Singlets
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● FCC-ee would serve as a Higgs factory, 
electroweak and top at highest luminosities

○ Measure Higgs particle properties 
and interactions in challenging decay modes

● Identification of color-neutral resonances relies 
on clustering final state into jets

● Calorimetry is expected to be much improved 
at future e+e− colliders, so that the 2-jet 
invariant mass resolution will be dominated not 
by detector resolution but rather by 
mis-clustering [1] (A)

● Jets are not well defined but color connection 
is physical, this may help improve the mass 
estimation for color singlets (H,Z,W) and 
remove more background 

A Comparison of clustering performance vs ideal reconstruction

B Example of miss clustering



Clustering Color Singlets
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Loss in performance can be due to:

● Miss matching of jets pairs
● Miss clustering of soft particles leading to 

degraded resolution

Possible solutions:

● Parameter tuning (BAO)
● Optimize distance metrics?: piecewise 

continuous function, hard optimization problem
● End-to-end approach

A Mismatching of jets pairs

H Z

H

H



Clustering Color Singlets
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● GNN - Node classification (instantiation) problem, 
permutation invariant and equivariant

● Arch: FC - Graph Transformer [1]
● Results:

○ Similar performance to classical approach 
○ Baselines:

■ Chi-squared
χ2 = 1⁄σH(M1/2-MH)2 + 1⁄σz (M2/1-MZ)2

■ Z only
χ2 = (M1/2-MZ)2

● Wiring is important, using information about the ordering 
(tree structure) performance can be improved

A. Mass distributions of signal
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MLPF
MLPF allows for a detector agnostic calorimeter clustering with similar performance to Pandora 
Next steps:

● Tackling PF (adding tracks and energy correction)
● Evaluation on more complex datasets with physics events and jet metrics 

IDEA wire chamber tracking
Created dataset, pipeline and started first trainings 
Next steps:

● Link the geometry to access wire coordinates
● Improve architecture and study performance
● Add parameter estimation for TrackStates 

Clustering
Color singlet clustering seems promising with ML but more research is necessary 

Thanks to the Key4hep team!

Summary and next steps
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Thank you 
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