PID performances and the $B_s \rightarrow D_s K$ analysis with the IDEA detector

Andrea Coccaro, Fabrizio Parodi, Emmanuel Perez

7th FCC Physics Workshop - Jan 2024 - Annecy

Introduction

Inclusive PID studies and performances

- MC-based selection of the bachelor kaon or pion using the $D_s K$ and $D_s \pi$ samples
- $B_s \rightarrow D_s K$ analysis, with $D_s \rightarrow \phi \pi$, $\phi \rightarrow KK$
 - Benchmark channel included in the mid-term review
 - Pre-selection based on Phi and D_s mass
 - 1.5 GeV as minimum momentum for all tracks
 - B/(S+B) defined in the region under the B_s peak [5.358,5.375] GeV
 - PID studies application

Possible options

- Likelihood ratio on dN/dx
- Likelihood ratio on velocity
- Combined likelihood ratio
- Also tested standard and x2 worse resolution in dN/dx and standard and improved TOF resolution

To be noted

- Velocity is being used instead of TOF to have an observable independent of detector geometry
- The selection for each option is tuned for 95% efficiency with respect to the initial selection

• The bachelor kaon or pion is selected using the $D_s K$ and $D_s \pi$ samples

• The bachelor kaon or pion is selected using the $D_s K$ and $D_s \pi$ samples

• Pulls well under control for both variables

- K/ π separation in dN/dx, velocity and combined approach
- The combined separation in terms of sigmas is obtained with

Separation [σ] = $\sqrt{-2\ln(LKRatio)}$

Mass spectrum without PID

Kinematic cuts

- $5.33 \text{ GeV} < m(B_s) < 5.41 \text{ GeV}$
- Vertex $\chi^2 < 5$
- $\cos(\Theta)_B_s \cos(\Theta)_bachelor < 0.5$

<u>B/(S+B) = 48%</u>

Mass spectrum with dN/dx likelihood ratio

Kinematic cuts

- $5.33 \text{ GeV} < m(B_s) < 5.41 \text{ GeV}$
- Vertex $\chi^2 < 5$
- $\cos(\Theta)_B_s \cos(\Theta)_bachelor < 0.5$

<u>B/(S+B) = 19%</u>

 $\underline{D_{s}\pi}$ efficiency = 0.27%

Mass spectrum with velocity likelihood ratio

Kinematic cuts

- 5.33 GeV < m(B_s) < 5.41 GeV Vertex χ^2 < 5
- $cos(\Theta)_B_s cos(\Theta)_bachelor < 0.5$

B/(S+B) = 33%

Focus on likelihood ratio with velocity

- Likelihood ratio based on velocity has very low impact on signal but still reduces the inclusive Z→bb background by a factor of 2
- Directly related to the bachelor momentum spectrum in the two samples and the momentum-dependent PID performance with velocity

Mass spectrum with combined likelihood

Kinematic cuts

- 5.33 GeV < m(B_s) < 5.41 GeV Vertex χ^2 < 5
- $\cos(\Theta)_{B_s} \cos(\Theta)_{bachelor} < 0.5$

B/(S+B) = 19%

\underline{D}_{π} efficiency = 0.22%

As proven in previous slide, the PID based on combined likelihood is only marginally improving over dN/dx because of the bachelor momentum

TOF resolution

Test #1: velocity likelihood ratio with 10 ps TOF resolution

Kinematic cuts

- $5.33 \text{ GeV} < m(B_s) < 5.41 \text{ GeV}$
- Vertex $\chi^2 < 5$
- $\cos(\Theta)_B_s \cos(\Theta)_bachelor < 0.5$

<u>B/(S+B) = 29%</u>

With 30 ps TOF resolution <u>B/(S+B) = 33%</u>

Test #2: combined likelihood with x2 dN/dx worse resolution

Kinematic cuts

- 5.33 GeV < m(B_s) < 5.41 GeV Vertex χ^2 < 5
- $\cos(\Theta)_B_{s} \cos(\Theta)_{bachelor} < 0.5$

B/(S+B) = 24%

Conclusions and Outlook

PID is crucial to reduce the combinatorics in exclusive decays

- Combined likelihood-based PID with dN/dx and TOF grants a 7-sigma K/ π separation for tracks with momentum in between 3 and 10 GeV
- Given the kinematics of the chosen $B_{c} \rightarrow D_{c}K$ benchmark channel dN/dx is more effective but TOF represents a valid complement and a valuable backup

Next steps

- Extend the studies to other exclusive channels, i.e. $B_s \rightarrow D_s K$, with $D_s \rightarrow \phi_P$ Explore inclusive PID, i.e. PID particles whose origin is not known a priori