## Study of $B^{0} \rightarrow K^{* 0} \tau \tau$ at FCC-ee

Tristan Miralles - FCC Clermont group

FCC Physics Workshop Annecy: $30^{\text {th }}$ of January


EUPI
UN IVERSITÉ
Clermont Auvergne


FUTURE CIRCULAR COLLIDER
(1) Context
(2) $B^{0} \rightarrow K^{*} \tau^{+} \tau^{-}$reconstruction method and vertexing emulation
(3) Backgrounds and selection
(4) Detectors emulation and precision determination
(5) Results \& outlook
$b \rightarrow s \tau \tau$ and objectives

- Third generation couplings in quark transitions are the less-well known.
- Specific models addressing the Flavour problem(s) often provide $b \rightarrow \tau$ enhancements or modifications w.r.t. the $\mathrm{SM} \Rightarrow b \rightarrow s \tau \tau\left(m_{\tau} \sim 20 m_{\mu}\right)$ is a must do to sort out the BSM models [1, 2]. Problem : measuring the $\nu$ 's.
- Thanks to its clear experimental environment and its ability to produce boosted $b$-hadrons, FCC-ee looks like the right place to reconstruct the $\nu$ 's.
- SM : the $b \rightarrow s \tau \tau$ transition proceeds through an electroweak penguin diagram.
- Study of the rare heavy-flavoured decay $B^{0} \rightarrow K^{*} \tau^{+} \tau^{-}$at FCC-ee [3]. SM prediction : $\mathrm{BR}=\mathcal{O}\left(10^{-7}\right) \rightarrow$ not observed yet (present limit : $\mathcal{O}\left(10^{-3}-10^{-4}\right)$ [4]).


## Topology

- The $B^{0} \rightarrow K^{*} \tau \tau$ decay topology is driven by the tau decay multiplicity.
- There are from 2 to 4 neutrinos (not detected) and at least 4 charged particles in the final state and one, two or three decay vertices.
- We focus on the 3-prongs tau decays ( $\tau \rightarrow \pi \pi \pi \nu$ ) for which the decay vertex can be reconstructed in order to solve fully the kinematics.
- 10 particles in the final state ( $K, 7 \pi, \nu, \bar{\nu}$ ), 3 decay vertices and 2 undetected neutrinos.


Decay topology

Goal : explore the feasibility of the search for $B^{0} \rightarrow K^{*} \tau^{+} \tau^{-}$and give the corresponding detector requirements.

- The events used in this work are generated with Pythia [5] ( $Z \rightarrow b \bar{b}$ and hadronisation) and EvtGen [6] (forcing the decay with adequate models).
- The reconstruction is performed with the FCC Analyses sw using Delphes [7] simulation (featuring the IDEA [8] detector).
- The simulated data use particles reconstructed with the momentum resolution given by IDEA.
- The vertex resolutions drives the feasability of the measurement (Krakow) $\rightarrow$ the main goal of the study is to address the precision of the $B F$ as function of the vertex resolution.
- State of the art IDEA vertexing performance will be determined and compared to other working points.


## Reconstruction method

- To fully reconstruct the kinematics of the decay $\rightarrow$ neutrinos momenta must be resolved.
- Enough constraints are available to determine the missing coordinates.
- Energy momentum conservation at $\tau$ decay vertex $\Rightarrow$ gives the neutrino momentum at the cost of a quadratic ambiguity :

$$
\left\{\begin{array}{l}
p_{\nu_{\tau}}^{\perp}=-p_{\pi_{t}}^{\perp} \\
p_{\nu_{\tau}}^{\|}=\frac{\left(\left(m_{\tau}^{2}-m_{\pi_{t}}^{2}\right)-2 p_{\pi_{t}}^{\perp, 2}\right)}{2\left(p_{\pi_{t}}^{\perp, 2}+m_{\pi_{t}}^{2}\right)} \cdot p_{\pi_{t}}^{\|} \pm \frac{\sqrt{\left(m_{\tau}^{2}-m_{\pi_{t}}^{2}\right)^{2}-4 m_{\tau}^{2} p_{\pi_{t}}^{\perp, 2}}}{2\left(p_{\pi_{t}}^{\perp, 2}+m_{\pi_{t}}^{2}\right)} \cdot E_{\pi_{t}}
\end{array}\right.
$$

- A selection rule has to be build in order to solve the ambiguities.
- Practically energy-momentum conservation at the $B$ decay vertex gives a condition between $\tau$ 's and $K^{*}$ :

$$
p_{\tau_{-}^{+}}=-\frac{\vec{p}_{K_{*}}^{+} \cdot \vec{e}_{\tau_{-}^{+}}}{1-\left(\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B}\right)^{2}}-p_{\tau_{+}^{-}} \cdot \frac{\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{\tau_{+}^{-}}-\left(\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B}\right)\left(\vec{e}_{\tau_{+}^{-}} \cdot \vec{e}_{B}\right)}{1-\left(\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B}\right)^{2}}
$$

- Method validated at MC truth level.


## Working points

- PV : 3D normal law including Beam Spot Constraints.
- SV \& TV $\rightarrow$ ellipsoidal (decaying particle direction as reference) :
- longitudinal,
- transverse.
- Several working points examined (Longitudinal-Transverse configuration denoted as L-T in the following) :
- $5 \mu \mathrm{~m}$ to $20 \mu \mathrm{~m}$ longitudinal,
- $1 \mu \mathrm{~m}$ to $8 \mu \mathrm{~m}$ transverse.
- 20-3 (L-T) smearing used as reference in the following.
- Experimental vertexing efficiency is conservatively taken as $80 \%$ for the time being ${ }^{\mathrm{i}}$.
i. Due to the large multiplicity of the decay FCCAnalyses vertexing failed to estimate efficiency by itself.


## The considered backgrounds

- The relevant backgrounds are the ones with a similar final state than the signal (K7 7 ).
- Several possible modes in $b \rightarrow c \bar{c} s$ and $b \rightarrow c \tau \nu$ transitions ${ }^{i i}$ but often not observed to date $\Rightarrow$ guesstimate of the branching fraction from phase space computation and use of analogies.
- Determination of the dominant backgrounds for the measurement by estimating per track efficiencies from 3 already generated backgrounds.
ii. More details on backgrounds choices in appendix.


## The considered backgrounds

- The relevant backgrounds are the ones with a similar final state than the signal $(K 7 \pi)$.
- Several possible modes in $b \rightarrow c \bar{c} s$ and $b \rightarrow c \tau \nu$ transitions ${ }^{i i}$ but often not observed to date $\Rightarrow$ guesstimate of the branching fraction from phase space computation and use of analogies.
- Determination of the dominant backgrounds for the measurement by estimating per track efficiencies from 3 already generated backgrounds.

| Decay | $\begin{gathered} \text { BF } \\ (\mathrm{SM} / \text { meas. }) \end{gathered}$ | Intermediate decay | BF _had | Additional missing particles |
| :---: | :---: | :---: | :---: | :---: |
| Signal : $B^{0} \rightarrow K^{*} \tau \tau$ | $1.30 \times 10^{-7}$ | $\tau \rightarrow \pi \pi \pi \nu, K^{*} \rightarrow K \pi$ | $9.57 \times 10^{-11}$ |  |
| Backgrounds $b \rightarrow c \bar{c} s$ : $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ $B^{0} \rightarrow K^{* 0} D_{s} D_{s}^{*}$ | $5.47 \times 10^{-5}$ $1.73 \times 10^{-4}$ | $\begin{gathered} D_{s} \rightarrow \tau \nu \\ D_{s} \rightarrow \tau \nu, \pi \pi \pi \pi^{0} \\ D_{s} \rightarrow \pi \pi \pi \pi^{0} \\ D_{s} \rightarrow \tau \nu, \pi \pi \pi \pi^{0} \pi^{0} \\ D_{s} \rightarrow \pi \pi \pi 2 \pi^{0} \\ D_{s} \rightarrow \tau \nu \\ D_{s} \rightarrow \pi \pi \pi \pi^{0} \pi^{\mathbf{0}} \end{gathered}$ | $\begin{aligned} & 1.14 \times 10^{-10} \\ & 1.28 \times 10^{-10} \\ & 1.45 \times 10^{-10} \\ & 1.08 \times 10^{-9} \\ & 1.02 \times 10^{-8} \\ & 3.60 \times 10^{-10} \\ & 3.22 \times 10^{-8} \\ & \hline \end{aligned}$ | $\begin{gathered} 2 \nu \\ \nu, \pi^{0} \\ 2 \pi^{0} \\ \nu, 2 \pi^{0} \\ 4 \pi^{0} \\ 2 \nu, \gamma / \pi^{0} \\ 4 \pi^{0}, \gamma / \pi^{0} \\ \hline \end{gathered}$ |
| $\begin{gathered} \text { Backgrounds } b \rightarrow c \tau \nu: \\ B^{0} \rightarrow K^{* 0} D_{s} \tau \nu \\ B^{0} \rightarrow K^{* 0} D_{s}^{*} \tau \nu \\ \hline \end{gathered}$ | $\begin{aligned} & 9.17 \times 10^{-6} \\ & 2.03 \times 10^{-5} \end{aligned}$ | $\begin{gathered} D_{s} \rightarrow \tau \nu \\ D_{s} \rightarrow \pi \pi \pi \pi^{0} \pi^{0} \end{gathered}$ | $\begin{aligned} & 3.59 \times 10^{-10} \\ & 7.51 \times 10^{-9} \end{aligned}$ | $\begin{gathered} 2 \nu \\ \nu, \gamma, 2 \pi^{0} \end{gathered}$ |

ii. More details on backgrounds choices in appendix.

## Selection

- The $B^{0}$ mass has been reconstructed for all our modes.
- Calorimeter PID performances : $\pi^{0}$ detection rate of $80 \%$ is assumed in order to reduce the $\pi^{0}$ backgrounds.
- Backgrounds are overwhelming.
- Additional selection is required. We played a Multivariate selection ${ }^{\text {iii }}$ with XGBoost [9].
- Purity of the signal (S/B) evaluated on the $[5.2,5.6] \mathrm{GeV} / \mathrm{c}^{2}$ window to quantify the improvement at each selection step.

|  | Signal purity |
| :---: | :---: |
| No selection | 0.11 |
| Preselection | 0.44 |
| Final selection | 3.04 |



iii. More details in appendix.

## IDEA working points

- In addition of the fastly emulated vertexing performances : use of a state of the art detector working point.
- The IDEA vertexing resolutions have been fitted ${ }^{\text {iv }}$ from signal events for each vertices.
- Emulation of the IDEA vertexing performances from a smearing that follow the fitted resolutions.


## Additional working points

- The SmearObjects.SmearedTracks tools allows to use IDEA vertexing with tracks improvements.
- 4 various IDEA working points examined with better $\Omega$ (momentum measurement) or IP resolutions.


Example of 2D smearing used to emulate the SV (top) and TV (bottom) IDEA resolutions.
iv. More details in appendix.

## Determination of the measurement precision

- Same selection applied to all vertex resolution emulations.
- Unbinned ML fit of the data with :
- signal $\rightarrow$ double CB + a Gaussian,
- background $\rightarrow$ two decreasing exponential.
- Fitting scheme :
(1) fit of the simulated signal
(2) fit of the signal and background rescaled w.r.t. their yields
- Extraction of the signal yield $N$ and the associated error $\sigma_{N}$.
- Precision of the BF measurement of $B^{0} \rightarrow K^{* 0} \tau \tau$ given by $\sigma_{N} / N^{v}$.

A RooPlot of "mass"


A RooPlot of "mass"

v. Precision plot with the fastly emulated points in appendix.

## Precision of the measurement



Emulation of the vertex resolution performances in order to look for the feasibility of the search of $B^{0} \rightarrow K^{* 0} \tau \tau$ at FCC-ee :

- IDEA baseline close to the evidence,
- IP measurements improvement could helps a lot $\Rightarrow$ but what does it mean in term of detector?


## How to practically improve IP resolutions

- Samples with improved detector in term of single hit resolution (from $3 \mu \mathrm{~m}$ to $2 \mu \mathrm{~m}$ for the barrel layers) and/or material budget in the vertex detector layers ( $-50 \%$ ) have been simulated.
- Idea : build mapping between SmearedTracks and regular detectors improvements from $d_{0}$ resolutions fits vi with :

$$
\sigma_{d_{0}}=\frac{a\left(\sqrt{x / X_{0}}\right)}{p_{T}}+b(\text { geometry })
$$

- Fail : complicate to put in relation SmeardTracks improvements with detector improvements.
- The single hit resolution improvement is, as expected, linearly correlated to the offset of the resolution.

- The material budget reduction doesn't match the expected $\sqrt{x / X_{0}}$ slope improvement $? \rightarrow$ to be investigated further
- Best thing to do now : emulate these new points.
vi. Detailed equation in appendix.


## Results



The $30 \%$ single hit resolution improvement allow to reach the $3 \sigma$ threshold.

## Results



The 50 \% reduced material budget in vertex detector has a bit less impact.

## Results

Precision of BF measurement as function of the resolution


The combination of the two improvements reach only $3.5 \sigma$.

## Conclusion

## Last words

- Analysis aimed at assessing the required vertexing performances to measure $B^{0} \rightarrow K^{* 0} \tau \tau$ from the two $\tau \rightarrow 3 \pi$ self-contained method only.
- Very demanding even for FCC ...
- But this work has been done under the SM hypothesis $\Rightarrow$ even if not SM there is a lot to win by improving the detector precision.


## Conclusion

## Last words

- Analysis aimed at assessing the required vertexing performances to measure $B^{0} \rightarrow K^{* 0} \tau \tau$ from the two $\tau \rightarrow 3 \pi$ self-contained method only.
- Very demanding even for FCC ...
- But this work has been done under the SM hypothesis $\Rightarrow$ even if not SM there is a lot to win by improving the detector precision.


## Term of the analysis

- The emulation of the vertexing performance for the "detector like working point" is the best we can do now.
- To close the analysis, we will try to play the full reconstruction of these points from the available tools, to access properly the vertexing efficiency and to challenge the emulations.


## Conclusion

## Last words

- Analysis aimed at assessing the required vertexing performances to measure $B^{0} \rightarrow K^{* 0} \tau \tau$ from the two $\tau \rightarrow 3 \pi$ self-contained method only.
- Very demanding even for FCC ...
- But this work has been done under the SM hypothesis $\Rightarrow$ even if not SM there is a lot to win by improving the detector precision.


## Term of the analysis

- The emulation of the vertexing performance for the "detector like working point" is the best we can do now.
- To close the analysis, we will try to play the full reconstruction of these points from the available tools, to access properly the vertexing efficiency and to challenge the emulations.


## Thanks!

## Neutrinos reconstruction method

To fully reconstruct the kinematics of the decay ( $B$ invariant-mass observable for instance) we need :

- Momentum of all final particles including not detected neutrinos.
- The decay lengths (6 constraints) together with the tau mass (2 constraints) can be used to determine the missing coordinates ( 6 degrees of freedom).
- We use energy-momentum conservation at tertiary (or $\tau$ decay) vertex with respect to $\tau$ direction ${ }^{\text {vii }}$.

$$
\left\{\begin{array}{l}
p_{\nu_{\tau}}^{\perp}=-p_{\pi_{t}}^{\perp} \\
p_{\nu_{\tau}}^{\|}=\frac{\left(\left(m_{\tau}^{2}-m_{\pi_{t}}^{2}\right)-2 p_{\pi_{t}, 2}^{\perp, 2}\right.}{2\left(p_{\pi_{t}}^{\perp, 2}+m_{\pi_{t}}^{2}\right)} \cdot p_{\pi_{t}}^{\|} \pm \frac{\sqrt{\left(m_{\tau}^{2}-m_{\pi_{t}}^{2}\right)^{2}-4 m_{\tau}^{2} p_{\pi_{t}}^{\perp, 2}}}{2\left(p_{\pi_{t}}^{\perp, 2}+m_{\pi_{t}}^{2}\right)} \cdot E_{\pi_{t}}
\end{array}\right.
$$

[^0]

The dotted lines represent the non-reconstructed particles. The plain lines are the particles that can be reconstructed in the detector.

## Selection rule

## There is a quadratic ambiguity on each neutrino momentum !

$\rightarrow$ The ambiguities propagate to $\tau$ and $B$ reconstructions
$\rightarrow 4$ possibilities by taking all + /- combination for the two neutrinos
$\Rightarrow A$ selection rule is needed to choose the right possibility
$\longrightarrow$ From the energy-momentum conservation at the $B$ decay vertex, we have a condition between the 2 taus and the $K^{*}$ with respect to the $B$ direction :

$$
p_{\tau_{-}^{+}}=-\frac{\vec{p}_{K_{*}}^{\perp} \cdot \vec{e}_{\tau_{-}^{+}}}{1-\left(\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B}\right)^{2}}-p_{\tau_{+}^{-}} \cdot \frac{\vec{e}_{\tau_{-}} \cdot \vec{e}_{\tau_{+}^{-}}-\left(\vec{e}_{\tau_{-}} \cdot \vec{e}_{B}\right)\left(\vec{e}_{\tau_{+}^{-}} \cdot \vec{e}_{B}\right)}{1-\left(\vec{e}_{\tau_{-}^{+}} \cdot \vec{e}_{B}\right)^{2}}
$$

## Expected number of events

The knowledge of the reconstruction efficiency allows us to compute the expected number of $B^{0}$ decays fully reconstructed at FCC-ee :
$\mathcal{N}_{K^{*} \tau \tau \rightarrow K 7 \pi 2 \nu}=\mathcal{N}_{Z} \cdot B R(Z \rightarrow b \bar{b}) \cdot 2 f_{d} \cdot B R\left(K^{*} \tau \tau\right) \cdot B R(\tau \rightarrow \pi \pi \pi \nu)^{2} \cdot B R\left(K^{*} \rightarrow K \pi\right) \cdot \epsilon_{\text {reco }} \cdot \epsilon_{\text {vertex }}$

## Where :

- $\mathcal{N}_{Z}=6 \times 10^{12}$ the expected number of $Z$ produced,
- $B R(Z \rightarrow b \bar{b})=0.1512 \pm 0.0005$,
- $f_{d}=0.407 \pm 0.007$ the hadronisation term,
- $B R\left(K^{*} \tau \tau\right)=1.30 \times 10^{-7} \pm 10 \%$ the SM predicted branching fraction,
- $B R(\tau \rightarrow \pi \pi \pi \nu)=0.0931 \pm 0.0005$,
- $B R\left(K^{*} \rightarrow K \pi\right)=0.69$,
- $\epsilon_{\text {reco }}=0.3840 \pm 0.0007$ for a smearing $3 \mu \mathrm{~m}-20 \mu \mathrm{~m}$,
- $\epsilon_{\text {vertex }}=0.8$,

$$
\Rightarrow \mathcal{N}_{K^{*} \tau \tau \rightarrow K 7 \pi 2 \nu} \approx 176 \pm 18
$$

## Some words about guesstimation of the BF for unseen modes

- $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ from analogy game and form factors / phase space corrections :

$$
B F\left(B^{0} \rightarrow K^{* 0} D_{s} D_{s}\right)=B F\left(B^{+} \rightarrow K^{+} D_{s}^{+} D_{s}^{-}\right) \times C_{\mathrm{FF}} \times C_{\mathrm{PS}}
$$

where $B^{+} \rightarrow K^{+} D_{s} D_{s}$ (recently measured by LHCb) has the same quark content than $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ but the spectator quark.

- Form factor correction $K$ vs $K^{*}$ from :

$$
C_{\mathrm{FF}}=\frac{\mathrm{FF}_{\mathrm{K}^{*}}}{\mathrm{FF}_{\mathrm{K}}}=\frac{B F\left(B^{+} \rightarrow D^{0} \mathrm{~K}^{*+}\right)}{B F\left(B^{+} \rightarrow D^{0} K^{+}\right)} .
$$

- Phase space $K$ vs $K^{*}$, from PS computed numerically (three body decay hypothesis used conservatively) :

$$
C_{\mathrm{PS}}=\frac{P S\left(B^{+} \rightarrow K^{*+} D_{s}^{+} D_{s}^{-}\right)}{P S\left(B^{+} \rightarrow K^{+} D_{s}^{+} D_{s}^{-}\right)}
$$

- $B^{0} \rightarrow K^{* 0} D_{s}^{*} D_{s}$ and $B^{0} \rightarrow K^{* 0} D_{s}^{*} D_{s}^{*}$ w.r.t. $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ from $B_{s}^{0} \rightarrow D_{s}^{(*)} D_{s}^{(*)}$ hierarchy.


## Some words about guesstimation of the BF for unseen modes

- $B^{0} \rightarrow K^{* 0} D_{s}^{(*)} \tau \nu$ from analogy via phase space computation [10] :

$$
B F\left(B^{0} \rightarrow K^{* 0} D_{s}^{(*)} \tau \nu\right)=B F\left(B^{+} \rightarrow K D_{s}^{(*)} \ell \nu\right) \times \frac{P S\left(B^{0} \rightarrow K^{* 0} D_{s}^{(*)} \tau \nu\right)}{P S\left(B^{+} \rightarrow K D_{s}^{(*)} \ell \nu\right)}
$$

where PS denotes the Phase Space computed numerricaly (three body decay hypothesis used conservatively) and $B^{+} \rightarrow K D_{s}^{(*)} \ell \nu$ is a reference mode with a known BF .

- $B^{0} \rightarrow K^{* 0} D_{s} \tau \nu$ and $B^{0} \rightarrow K^{* 0} D_{s}^{*} \tau \nu$ w.r.t $B^{0} \rightarrow K^{* 0} D_{s}^{(*)} \tau \nu$ from $B^{0} \rightarrow D^{(*)} \ell \nu$ hierarchy.
- $B_{s}^{0} \rightarrow K^{* 0} D^{(*)} \tau \nu$ from analogy via phase space computation [10] :

$$
B F\left(B_{s}^{0} \rightarrow K^{* 0} D^{(*)} \tau \nu\right)=B F\left(B_{s}^{0} \rightarrow D_{s 1} \mu \nu\right) \times \frac{P S\left(B_{s}^{0} \rightarrow K^{* 0} D^{(*)} \tau \nu\right)}{P S\left(B_{s}^{0} \rightarrow D_{s 1} \mu \nu\right)}
$$

where PS denotes the Phase Space computed numerricaly (three body decay hypothesis used conservatively) and $B_{s}^{0} \rightarrow D_{s 1} \mu \nu$ is a reference mode with a known BF .

- $B_{s}^{0} \rightarrow K^{* 0} D \tau \nu$ and $B_{s}^{0} \rightarrow K^{* 0} D^{*} \tau \nu$ w.r.t. $B_{s}^{0} \rightarrow K^{* 0} D^{(*)} \tau \nu$ from $B^{0} \rightarrow D^{(*)} \ell \nu$ hierarchy.


## Extended background table


viii. $\quad D_{S} \rightarrow 3 \pi n \pi^{0}$ modes involves $\eta / \omega$ intermediate states.

## Update of the $D_{s} \rightarrow \pi \pi \pi n \pi^{0}$ simulation

## Better simulations for $D_{s} \rightarrow \pi \pi \pi n \pi^{0}$

- Previously this decay has been generated in the Phase Space $\rightarrow$ a more accurate simulation of the decay is needed $\Rightarrow$ new samples which include $\eta / \omega$ (saturating the inclusive BF ) intermediate states are in order.
- Replacement of the previous samples.
- $B^{0} \rightarrow K^{* 0} D_{s} D_{s}\left(D_{s} \rightarrow \pi \pi \pi \pi^{0}\right)$ is now $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ where $D_{s} \rightarrow \eta / \omega \pi$ and $\eta / \omega \rightarrow \pi \pi \pi^{0}$.
- $B^{0} \rightarrow K^{* 0} D_{s} D_{s}\left(D_{s} \rightarrow \pi \pi \pi \pi^{0} \pi^{0}\right)$ is now $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ where $D_{s} \rightarrow \eta / \omega \pi \pi^{0}$ and $\eta / \omega \rightarrow \pi \pi \pi^{0}$.


## Distribution of $\pi^{0}$ momentum from $D_{s} \rightarrow 3 \pi 2 \pi^{0}$

Momentum and transverse momentum distributions of the $\pi^{0}$


Distribution of $\pi^{0}$ momentum from $D_{s} \rightarrow 3 \pi 2 \pi^{0}$.

## Some word about the choice of background to consider

- $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ with the two $D_{s}$ deacying as $D_{s} \rightarrow \tau \nu$, $D_{s} \rightarrow \pi \pi \pi \pi^{0}$ and $D_{s} \rightarrow \pi \pi \pi \pi^{0} \pi^{0}$ already generated.
- $B^{0} \rightarrow K^{* 0} D_{s}^{*} D_{s}$ with the two $D_{s}$ deacying as $D_{s} \rightarrow \tau \nu$ already generated.
- $B^{0} \rightarrow K^{* 0} D_{s} D_{s}$ with both $D_{s} \rightarrow \tau \nu$ and $D_{s} \rightarrow \pi \pi \pi \pi^{0}$ already generated.
- Construction of a "per track" efficiency by taking the square root of the reconstruction efficiency of the four first modes $\Rightarrow \epsilon\left(D_{s} \rightarrow \tau \nu\right)$, $\epsilon\left(D_{s}^{*} \rightarrow \tau \nu\right), \epsilon\left(D_{s} \rightarrow \pi \pi \pi \pi^{0}\right)$ and $\epsilon\left(D_{s} \rightarrow \pi \pi \pi \pi^{0} \pi^{0}\right)$.
- Cross check : $\epsilon\left(D_{s} \rightarrow \tau \nu\right) \times \epsilon\left(D_{s} \rightarrow \pi \pi \pi \pi^{0}\right) \simeq \epsilon\left(B^{0} \rightarrow\right.$ $\left.K^{* 0} D_{s} D_{s}, D_{s} \rightarrow \tau \nu, D_{s} \rightarrow \pi \pi \pi \pi^{0}\right)$.
- Construction of an $\epsilon(*)=\epsilon\left(D_{s}^{*} \rightarrow \tau \nu\right) / \epsilon\left(D_{s} \rightarrow \tau \nu\right)$.
- Computation of an estimated efficiency for the possible background from these per track efficiencies.
- Ranking of the backgrounds via $B F \times \epsilon$.
- Choice of the biggest one for each type of specific topology.


## Reconstruction efficiency

| Mode | Total reconstruction <br> efficiency $(\%)$ |
| :---: | :---: |
| Signal | $38.40 \pm 0.07$ |
| $B^{0} \rightarrow K^{* 0} D_{s} D_{s}, D_{s} \rightarrow \tau \nu$ | $47.49 \pm 0.04$ |
| $B^{0} \rightarrow K^{* 0} D_{s} D_{s}, D_{s} \rightarrow 3 \pi \pi^{0}$ | $2.190 \pm 0.002$ |
| $B^{0} \rightarrow K^{* 0} D_{s} D_{s}, D_{s} \rightarrow 3 \pi 2 \pi^{0}$ | $56.30 \pm 0.05$ |
| $B^{0} \rightarrow K^{* 0} D_{s} D_{s}, D_{s} \rightarrow \tau \nu / 3 \pi \pi^{0}$ | $10.14 \pm 0.01$ |
| $B^{0} \rightarrow K^{* 0} D_{s} D_{s}, D_{s} \rightarrow \tau \nu / 3 \pi 2 \pi^{0}$ | $51.64 \pm 0.04$ |
| $B^{0} \rightarrow K^{* 0} D_{s}^{*} D_{s}, D_{s} \rightarrow \tau \nu$ | $48.27 \pm 0.04$ |
| $B^{0} \rightarrow K^{* 0} D_{s}^{*} D_{s}, D_{s} \rightarrow 3 \pi 2 \pi^{0}$ | $57.30 \pm 0.04$ |
| $B^{0} \rightarrow K^{* 0} D_{s} \tau \nu, D_{s} \rightarrow \tau \nu$ | $42.85 \pm 0.04$ |
| $B^{0} \rightarrow K^{* 0} D_{s}^{*} \tau \nu, D_{s} \rightarrow 3 \pi 2 \pi^{0}$ | $47.26 \pm 0.04$ |

Summary table of the total reconstruction (including the $B^{0}$ candidate building and neutrino reconstruction) efficiency as function of the mode for the reference vertexing performances working point.

## Landscape without selection

- The $B^{0}$ mass has been reconstructed for all our modes.
- Calorimeter PID performances : $\pi^{0}$ detection rate of $80 \%$ is assumed in order to reduce the $\pi^{0}$ backgrounds.
- Backgrounds are overwhelming.
- Additional selection is required. We played a Multivariate selection (XGBoost [9]).


$$
\begin{array}{l|l|}
\hline \text { Signal purity }{ }^{\mathrm{ix}} & 0.11 \\
\hline
\end{array}
$$

[^1]
## Preselection

- Several kinematics variables has been save for each events (like momentum or intermediate mass).
- Among them several discriminatives variables have been

| Variable | Cut |
| :---: | :---: |
| $m_{2 \pi_{\text {min }}}^{2} \& m_{2 \pi_{\text {max }}}^{2}$ | $<0.3 \&<0.5 \mathrm{GeV}$ |
| $p_{K^{*}}$ | $<1 \mathrm{GeV}$ |
| $p_{3 \pi}$ | $<1 \mathrm{GeV}$ |
| $p_{\pi_{\text {max }}}$ | $<0.25 \mathrm{GeV}$ |
| $p_{\pi_{\text {min }}}$ | $<0.2 \mathrm{GeV}$ |
| $F D_{B}$ | $<0.3 \mathrm{~mm}$ |
| $F D_{\tau}$ | $>4 m m$ |
| $m_{3 \pi}$ | $<0.750 \mathrm{GeV}$ |
| $m_{2 \pi_{\text {max }}}$ | $<0.5 \mathrm{GeV}$ |
| $m_{2 \pi_{\text {min }}}$ | $>1 \mathrm{GeV}$ | found ${ }^{x}$.

- The preselection has been built with these variables.
- The plot displays the result after preselection $\rightarrow$ the picture show a first improvement.
- The MVA can be trained against the backgrounds on the $[5,5.6]$ GeV mass window.



## MVA

- Training dataset generated with signal and the collection of available backgrounds.
- The backgrounds are considered in natural proportion (after the preselection).
- 50/50 split train/validation.
- Previous variables are given as inputs as well as the reconstructed $p_{\tau}$ of each $\tau$ candidate.
- XGB parameters optimised on AUC.
- Overtraining plot in order to check the validity of the training $\rightarrow$ OK.
- Use of the MVA ${ }^{\text {xi }}$ to perform the selection (cut at 0.5 on the BDT output).



| Signal purity | 3.04 |
| :--- | :--- |

[^2]
## Reconstructed $p_{\text {tau }}$ distribution signal vs backgrounds $20-3$ configuration



## 000000000000000000000000000

## $F D_{\tau}$ distribution signal vs backgrounds $20-3$ configuration

sel 20-3 tau FD






Bd2KstDsstTauNuDsst2DsgammaDs2pipipipiOpi0


## 000000000000000000000000000

## Dalitz plane $\left(m_{\pi_{\max }}^{2}, m_{\pi_{\min }}^{2}\right)$ signal and backgrounds $20-3$ configuration



## XGB features importances

## Feature importance



## Precision of the measurement with other longitudinal resolutions.

Precision of BF measurement as function of the resolution


Precision on the BF measurement as function of the vertex resolution with 3 longitudinal configurations. Observed hierarchy issue comes from the interplay between the smearing of the vertexing and the fit model.

## The IDEA working point : primary vertex resolution

- Resolutions determined from $10^{6}$ signal events.
- Reconstructed PV position fitted from reconstructed tracks with the FCCAnalyses VertexFitterSimple tools (Beam Spot Constraints set at (4.5, 20 $\left.\left.e^{-3}, 300\right) \mu \mathrm{m}\right)$.
- Displacement of the reconstructed PV w.r.t. the MC truth PV is build in cartesian coordinates.
- The IDEA resolution is determined for each coordinate by a fit of the displacement:
- double gaussian model on $(x, z)^{x i i}$,
- simple gaussian model on $y$.
- Resolutions $\mathcal{O}(3 \mu \mathrm{~m})$ for $(\mathrm{x}, \mathrm{z})$.
- Resolution $\mathcal{O}(20 \mathrm{~nm})$ for y .



PV displacement and fit of the resolution for $\times$ (top) and $y$ (bottom).

[^3]
## The IDEA working point : secondary and tertiary vertices resolutions

- Reconstructed SV $\left(K^{* 0} \rightarrow K \pi\right)$ and TV ( $\tau \rightarrow 3 \pi$ ) positions fitted from MC matched reconstructed tracks via FCCAnalyses VertexFitterSimple tools.
- Displacement of the reconstructed SV and TV w.r.t. to the MC truth projected on decay plan (L-T).
- Signed decomposition of the transverse displacement determined from two orthogonal directions pick-up randomly via a circle parameterized in the transverse plan itself.
- The IDEA resolution is determined for each coordinate by a fit of the displacement with a triple gaussian model.



TV displacement and fit of the resolution for L (top) and T (bottom) directions.

## The IDEA working point : emulation

- Emulation of the PV resolutions with 3D-gaussian smearing that follow the combined $\sigma$ of the fits among each axis.
- SV and TV smearing via the IDEA fitted resolutions.
- Smearing emulated on each direction via accept/reject algorithms.


## Additional working points

- The SmearObjects.SmearedTracks tools allows to use IDEA vertexing with brutal tracks improvements.
- 4 various IDEA working points examined with better $\Omega$ (momentum) or IP resolutions.


Example of 2D smearing used to emulate the SV (top) and TV (bottom) IDEA resolutions.

## Other IDEA resolution plots



PV displacement and fit of the resolution for $z$

## Other IDEA resolution plots



SV displacement and fit of the resolution for L (top) and T (bottom).

## More detailed about IP resolution

Complete equation :

$$
\sigma_{\mathrm{d}_{0}} \simeq \sqrt{\frac{r_{2}^{2} \sigma_{1}^{2}+r_{1}^{2} \sigma_{2}^{2}}{\left(r_{2}-r_{1}\right)^{2}}} \oplus \frac{r}{p_{T} \sin ^{1 / 2} \theta} 13.6 \mathrm{MeV} \sqrt{\frac{x}{X_{0}}},
$$

where the first term is link to detector resolution and the second to multiple scattering. $r_{1(2)}$ is the distance between the first (second) hit of the track and the PV, $\sigma_{1(2)}$ is the resolution on the first (second) hit of the track. $r$ is the distance between the PV and the contact points of the track with the vertex detector layer, $p_{T}$ is the transverse momentum of the track, $\theta$ is the polar angle of the track, $x$ is the thickness and $X_{0}$ is the radiation length.

Paul Langacker．
The physics of heavy z＇gauge bosons．
Reviews of Modern Physics，81（3）：1199， 2009.
围 I Dorsner，S Fajfer，A Greljo，JF Kamenik，and N Kosnik．
Physics of leptoquarks in precision experiments and at particle colliders．
Physics Reports， 641 ：1－68， 2016.
嗇 JF Kamenik，S Monteil，A Semkiv，and L Vale Silva．
Lepton polarization asymmetries in rare semi－tauonic $b \rightarrow s \mathrm{~b} \rightarrow \mathrm{~s}$ exclusive decays at fcc－ee．
The European Physical Journal C，77（10）：1－19， 2017.
睩 BABAR Collaboration et al．
Search for b＋－＞k＋tau（＋）tau（－）at the babar experiment． Physical Review Letters，2017，vol．118，num．3，p．031802， 2017.

Torbjörn Sjöstrand, Stefan Ask, Jesper R Christiansen, Richard Corke, Nishita Desai, Philip Ilten, Stephen Mrenna, Stefan Prestel, Christine O Rasmussen, and Peter Z Skands.
An introduction to pythia 8.2.
Computer physics communications, 191 :159-177, 2015.
R- Anders Ryd, David Lange, Natalia Kuznetsova, Sophie Versille, Marcello Rotondo, DP Kirkby, FK Wuerthwein, and A Ishikawa.
Evtgen : a monte carlo generator for b-physics. BAD, 522 :v6, 2005.
國 J De Favereau, Christophe Delaere, Pavel Demin, Andrea Giammanco, Vincent Lemaitre, Alexandre Mertens, Michele Selvaggi, Delphes 3 Collaboration, et al. Delphes 3 : a modular framework for fast simulation of a generic collider experiment.
Journal of High Energy Physics, 2014(2) :57, 2014.

囯 CERN.
2nd fcc-france workshop, jan 20-21, 2021.
https:...Physics.pdf.
T- Tianqi Chen and Carlos Guestrin.
Xgboost: A scalable tree boosting system.
In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, pages 785-794, 2016.
國 Lingfeng Li and Tao Liu.
$b \rightarrow s \tau+\tau$-physics at future $z$ factories.
Journal of High Energy Physics, 2021(6) :1-31, 2021.


[^0]:    vii. Another way to do this computation is given by [10].

[^1]:    ix. Signal purity is defined as $S / B$ and evaluated on the $[5.2,5.6] \mathrm{GeV} / \mathrm{c}^{2}$ window.

[^2]:    xi. Feature importance plot in appendix.

[^3]:    xii. In appendix.

