

FCC-ee ZH full hadronic final state

7th FCC Physics Workshop January 29, 2024 to February 2, 2024

Jan Eysermans, Loukas Gouskos, George Iakovidis, Michele Selvaggi, Iza Veliscek, Haider Abidi, Viviana Cavaliere

Motivation

- At $\sqrt{s} = 240$ GeV the Higgs boson is produced in association with a Z boson \rightarrow measure couplings !
- Use the analysis to study and optimise the detector performance

- Cross-section
- $[pb^{-1}]$
- 0.2032195 0.046191
- 0.0067643
- 0.0071611
- 0.13635

- Analysis of full hadronic final state
- $Z(ll)(BR(Z \rightarrow ll) \sim 6.7\%)$ and $Z(\nu\nu)$ $(BR(Z \rightarrow \nu \nu) \sim 20\%)$ channels have been already addressed
- $Z(q\bar{q})$ provides significantly higher statistics $BR(Z \rightarrow q\bar{q}) \sim 70\%$
 - Greater challenge though since it depends on jet clustering
 - Jet energy resolution is worse than measuring a track momentum and electromagnetic energy resolution
 - Ambiguity on finding which jets are originated from Z and H

Analysis overview

- Signal
 - $\rightarrow Z \rightarrow jj, H \rightarrow jj \quad (j = b, c, s, g)$
- Backgrounds:
 - \blacktriangleright WW, ZZ, Zqq, HWW, HZZ, HZ γ , $\nu\nu$ H
- Jets reconstruction
 - N = 4 Durham *ee* $k_{\rm T}$ exclusive <u>algorithm</u>
 - ParticleNet jet tagger (7 categories: b, c, s, g, τ, u, d)
- Analysis
 - Cuts & Events selection (orthogonal to Z(ll)H and $Z(\nu\nu)H$ analysis)
 - Jet pairs based on tagger scores & combinatorics
 - Fit and sensitivity extraction

Datasets

- FCCAnalysis framework used to produce ntuples, then analysis with standalone scripts
- IDEA Detector (delphes fast sim) (winter2023 samples)
- Training model for ParticleTransformer "wc_pt_7classes_12_04_2023", tagger scores: b, c, s, g, τ, u, d

	Process	Cross-section	Events
		$[\mathrm{pb}^{-1}]$	
Signal	$ e^+e^- \rightarrow Z(cc)H(gg)$	0.001911	400000
	$e^+e^- \to Z(cc)H(ss)$	0.000006	300000
	$e^+e^- \to Z(cc)H(cc)$	0.000675	400000
	$e^+e^- \to Z(cc)H(bb)$	0.013590	200000
	$e^+e^- \rightarrow Z(qq)H(gg)$	0.004367	400000
	$e^+e^- \rightarrow Z(qq)H(ss)$	0.000013	400000
	$e^+e^- \rightarrow Z(qq)H(cc)$	0.001542	200000
	$e^+e^- \rightarrow Z(qq)H(bb)$	0.031070	500000
	$e^+e^- \rightarrow Z(bb)H(gg)$	0.002454	200000
	$e^+e^- \to Z(bb)H(ss)$	0.000007	400000
	$e^+e^- \rightarrow Z(bb)H(cc)$	0.000866	400000
	$e^+e^- \to Z(bb)H(bb)$	0.017450	100000
	$e^+e^- \rightarrow Z(ss)H(gg)$	0.002453	400000
	$e^+e^- \to Z(ss)H(ss)$	0.000007	300000
	$e^+e^- \rightarrow Z(ss)H(cc)$	0.000866	300000
	$e^+e^- \rightarrow Z(ss)H(bb)$	0.017450	200000

Samples for $H \rightarrow qq(u, d)$ not there yet

FUTURE CIRCULAR

COLLIDER

CERN

Brookhaven

National Laboratory

.

	Process	Cross-section	Events
		$[\mathrm{pb}^{-1}]$	
Background	$ e^+e^- \rightarrow Z(bb)H(\tau\tau)$	0.00188	400000
	$e^+e^- \to Z(ss)H(\tau\tau)$	0.001879	400000
	$e^+e^- \rightarrow Z(cc)H(\tau\tau)$	0.001464	400000
	$e^+e^- \rightarrow Z(qq)H(\tau\tau)$	0.003346	200000
	$e^+e^- \to Z(bb)H(Z\gamma)$	4.594 e- 05	400000
	$e^+e^- \to Z(cc)H(Z\gamma)$	3.578 e- 05	400000
	$e^+e^- \rightarrow Z(qq)H(Z\gamma)$	8.177 e-05	393135
	$e^+e^- \rightarrow Z(ss)H(Z\gamma)$	4.593 e- 05	300000
	$e^+e^- \rightarrow Z(cc)H(WW)$	0.005023	1200000
	$e^+e^- \rightarrow Z(qq)H(WW)$	0.01148	1100000
	$e^+e^- \rightarrow Z(ss)H(WW)$	0.006447	1200000
	$e^+e^- \rightarrow Z(bb)H(WW)$	0.00645	1000000
	$e^+e^- \rightarrow Z(bb)H(ZZ)$	0.0007915	1000000
	$e^+e^- \rightarrow Z(cc)H(ZZ)$	0.0006164	1200000
	$e^+e^- \rightarrow Z(qq)H(ZZ)$	0.001409	1200000
	$e^+e^- \rightarrow Z(ss)H(ZZ)$	0.0007912	600000
	$e^+e^- \rightarrow Z(\nu\nu)H(jj)$	0.046191	3500000
	$e^+e^- \to W^+W^-$	16.4385	373375386
	$e^+e^- \rightarrow ZZ$	1.35899	56162093
	$ e^+e^- \to Z/\gamma^*(q\bar{q})$	52.6539	100559248

Cuts

- Events (orthogonal to $ll, \nu\nu$ analysis)
 - $n_i = 4$ per event
 - Cuts on leptons
 - lepton (both e, μ) $p_l < 20 \,\text{GeV} \& n_{e,\mu} \le 2 \,\text{per event}$
 - Cuts on $m_{\rm vis}, \theta_{\rm vis}$
 - $m_{\rm vis} > 150 \,{\rm GeV}$,
 - $0.15 < \theta_{vis} < 3$
 - Clustering merging parameter cut (d_{12}, d_{23}, d_{34})
- On the jet pairs

 - Same flavour pairs: Find minimum $(m_{j_1,j_2} m_Z)^2 + (m_{j_3,j_4} m_H)^2$ for all jet combination

$$\sqrt{(m_{z_{jj}} - m_W)^2 + (m_{H_{jj}} - m_W)^2} > 10, \sqrt{(m_{z_{jj}} - m_W)^2}$$

• $50 < m_{Z_{ii}} < 125 \,\text{GeV}, m_{H_{ii}} > 91 \,\text{GeV}$

• Not same flavour pairs: Resolve Z from the minimum $(m_{ij} - m_Z)^2$ for both pairs, remaining jj as H $(-m_Z)^2 + (m_{H_{ii}} - m_Z)^2 > 10, ZZ, WW$ rejection

Cut efficiencies

	Lepton cut	$M_{ m vis}, heta_{ m vis}$	d_{ij}		Lepton cut	$M_{\rm vis}, \theta_{\rm vis}$	d_{ij}
$e^+e^- \to Z(cc)H(gg)$	98.7	88.3	87.2	$e^+e^- \to Z(bb)H(\tau\tau)$	63.7	43.9	32.8
$e^+e^- \to Z(cc)H(ss)$	99.0	88.4	86.3	$e^+e^- \to Z(ss)H(\tau\tau)$	67.1	48.3	36.4
$e^+e^- \to Z(cc)H(cc)$	96.6	88.1	86.1	$e^+e^- \to Z(cc)H(\tau\tau)$	68.0	50.2	38.1
$e^+e^- \to Z(cc)H(bb)$	89.7	83.5	81.2	$e^+e^- \to Z(qq)H(\tau\tau)$	67.9	50.1	38.1
$e^+e^- \to Z(qq)H(gg)$	99.8	86.2	85.2	$e^+e^- \to Z(bb)H(Z\gamma)$	86.5	62.4	61.3
$e^+e^- \to Z(qq)H(ss)$	99.9	86.6	84.6	$e^+e^- \to Z(ss)H(Z\gamma)$	90.5	64.0	62.9
$e^+e^- \to Z(qq)H(cc)$	97.8	87.1	85.2	$e^+e^- \to Z(cc)H(Z\gamma)$	91.7	63.7	62.5
$e^+e^- \to Z(qq)H(bb)$	91.4	83.8	81.7	$e^+e^- \to Z(qq)H(Z\gamma)$	91.6	63.1	61.9
$e^+e^- \to Z(bb)H(gg)$	94.6	87.0	85.9	$e^+e^- \to Z(bb)H(WW)$	64.7	57.4	54.6
$e^+e^- \to Z(bb)H(ss)$	95.0	87.3	85.1	$e^+e^- \to Z(ss)H(WW)$	68.0	59.8	57.0
$e^+e^- \to Z(bb)H(cc)$	92.1	85.7	83.4	$e^+e^- \to Z(cc)H(WW)$	68.7	59.9	57.0
$e^+e^- \to Z(bb)H(bb)$	84.4	79.8	77.3	$e^+e^- \to Z(qq)H(WW)$	68.6	59.4	56.6
$e^+e^- \rightarrow Z(ss)H(gg)$	99.8	87.0	85.9	$e^+e^- \to Z(bb)H(ZZ)$	81.8	60.6	57.8
$e^+e^- \to Z(ss)H(ss)$	99.9	87.2	85.2	$e^+e^- \to Z(ss)H(ZZ)$	86.1	63.3	60.5
$e^+e^- \to Z(ss)H(cc)$	97.8	87.7	85.7	$e^+e^- \to Z(cc)H(ZZ)$	87.5	63.9	61.1
$ e^+e^- \rightarrow Z(ss)H(bb)$	91.3	84.1	82.0	$e^+e^- \to Z(qq)H(ZZ)$	87.5	63.6	60.8
				$e^+e^- \to Z(\nu\nu)H(jj)$	87.5	00.1	00.0
				$e^+e^- \to W^+W^-$	64.1	45.1	37.9
				$e^+e^- \rightarrow ZZ$	79.8	43.4	38.1
				$e^+e^- \to Z/\gamma^*(q\bar{q})$	96.5	31.8	07.6

Lepton distributions

FCCAnalyses: FCC-ee Simulation (Delphes) Z(cc) H(ττ) Ι Ζ(qq) H(ττ) Ι Z(ss) H(ττ) Z(bb) H(Za) Z(cc) H(Za) Z(qq) H(Za) Z(ss) H(Za) Z(bb) H(WW) -Z(cc) H(WW) Z(qq) H(WW) Z(ss) H(WW) $\sqrt{s} = 240.0 \text{ GeV}^{-2(00) H(ZZ)}$ Z(qq) H(ZZ) Z(ss) H(ZZ) Z(cc) H(ZZ) Z(cc) H(bb) -Z(cc) H(aa) Z(cc) H(ss) — Z(cc) H(cc) Z(qq) H(bb) Z(qq) H(ss) Z(qq) H(gg) Z(qq) H(cc) $e^+e^- \rightarrow Z(jj) H(jj) Z(bb) H(ss)$ Z(bb) H(cc) Z(bb) H(gg) Z(bb) H(bb) Z(ss) H(bb) — Z(ss) H(gg) Z(ss) H(ss) Z(ss) H(cc) 60 100 120 80 40 Leading muon momentum [GeV]

Distributions on $M_{\rm vis}$ and $\theta_{\rm vis}$

Distributions on d_{ij}

events

CERN

FUTURE CIRCULAR

COLLIDER

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

T		_	-			1	-	-	-
1			I	I		l	1	'-	-
	_								Ξ
			Z(qq)	H(ττ)		
			Z(ss)	H(ž	Za)	_
			71	'nh)	Ηľ	ŴŃ	٨ŀ	_
					, , .	· '(~~`	·•)	III
			2(SS)	H(4	<u>L</u> Z)	
			Zo	pp					_
	_		Z(cc) I	H(I	ob)		
			Z(aq)	H(bb)	Ш
			7	'hh	Ś	нù)		
			~(, DD	,	(_
			Ζ(SS)	H(d	cc)	_	
									IIII
									Π
								_	
									-
								-	
									_
								-	
				_					
								_	
									III
									Π
									III
			1			F			
l	U		Ì	9	U	U	ľ)	
						Ч		S	Л
					(u		J	4

						pred	iction				
ŀ		U	D	TAU	В	С	S	G	No Pair	2 Pairs	0
	$Z(c\overline{c}), H(gg)$	1.585	1.615	0.033	1.660	48.724	3.192	43.190	3.546	96.454	\cap
	$Z(c\overline{c}), H(s\overline{s})$	1.915	2.292	0.085	0.315	48.658	36.163	10.571	5.717	94.283	
	$Z(c\overline{c}), H(c\overline{c})$	0.322	0.260	0.073	1.052	85.677	1.446	11.171	0.656	99.344	
	$Z(c\overline{c})$. $H(b\overline{b})$	0.101	0.087	0.023	48.953	45.199	0.445	5.192	2.325	97.675	10
	$Z(q\overline{q}), H(gg)$	13.507	15.310	0.099	1.710	2.639	8.566	58.168	5.113	94.887	
gr	$Z(q\overline{q}), H(s\overline{s})$	15.261	18.125	0.172	0.140	0.806	41.632	23.864	9.199	90.801	
	$Z(q\overline{q}), H(c\overline{c})$	12.792	14.381	0.200	0.262	49.295	5.826	17.243	7.621	92.379	20
	$Z(a\overline{a})$ $H(bh)$	12.626	14.276	0.189	49.881	1.389	5.041	16.599	4.663	95.337	20
	Z(bb), H(ss) Z(bh) H(ss)	1.567	1.592	0.023	50,165	2.596	2.677	41.380	2.532	97.468	
	Z(bb), H(cc) $Z(b\bar{b}) H(c\bar{c})$	1.939	2.316	0.096	49.834	1,449	35.184	9.181	4,155	95.845	
	$Z(b\overline{b}), H(c\overline{c})$	0.098	0.080	0.023	48.601	45.874	0.412	4.912	2.406	97.594	30
	$7(b\overline{h})$ $H(b\overline{h})$	0.041	0.029	0.043	87.650	1.605	0.146	10.486	0.246	99.754	
	$Z(s\overline{s}), H(s\overline{s})$	3.684	4.242	0.071	1,583	2.671	34.532	53.218	3.732	96.268	
	$Z(s\overline{s}), H(s\overline{s})$	5.014	6.140	0.175	0.147	1,173	64,793	22.557	2.916	97.084	40
	$Z(ss), H(c\overline{c})$	1,799	2.080	0.125	0.250	49.042	34.659	12.045	4.524	95.476	10
	$Z(\overline{v}\overline{s})$ $H(\overline{v}\overline{b})$	1,733	2.065	0.123	49.695	1.405	33,795	11,185	3.735	96-265	
	$Z(b\overline{b})$ $H(\tau\tau)$	0.336	0.202	43.223	48.363	5.416	0.183	2.278	5.289	94.711	
	$Z(ss), H(\tau\tau)$ $Z(c\overline{c}) H(\tau\tau)$	0.523	0.368	43,690	1,061	50.954	0.619	2.785	7.028	92.972	50
	$Z(qq), H(\tau\tau)$ $Z(s\overline{s}) H(\tau\tau)$	2.256	2.571	43.870	0.618	6.575	40.830	3.280	23.631	76.369	50
	$Z(DD), \Pi(Z\gamma)$ $Z(\overline{aa}) H(\tau\tau)$	17 177	20 281	43 998	0.678	6 388	5 505	5 973	30 470	69 530	
	$Z(b\overline{b})$ $H(Z\gamma)$	9.847	3.430	6 734	55 442	8 609	7 707	8 232	6 592	93 408	00
Ω	$Z(ss), \Pi(Z\gamma)$ $Z(c\overline{c}) H(Z\gamma)$	10 011	3 490	5 958	10 201	53 524	8 327	8 487	9 576	90.424	60
ð	$Z(qq), \Pi(Z\gamma)$ $Z(s\overline{s}) H(Z\gamma)$	14 536	5 729	6 479	11 2/1	9.750	38 344	13 664	12 507	87 403	
さ	$Z(DD), \Pi(WW)$ $Z(a\overline{a}) H(Z_{N})$	20 180	12 721	6 788	11 725	0.730	10 120	15.644	13 66/	86.336	
$\mathbf{\hat{O}}$	$Z(CC), \Pi(WW)$ $Z(h\overline{h}) \Pi(WW)$	3.000	3.027	1.715	50 426	18 210	5 006	17 3/2	2 A55	92.000	/0
	$Z(SS), \Pi(WW)$ $Z(c\overline{c}) H(WW)$	3.680	2,020	1.397	2.370	22.904 59.146	7 997	29.019	7 032	02.068	70
JC	$Z(qq), \Pi(WW)$	5 122	14.004	1.402	2.000	22.020	22 1/5	20.010	24.290	21 666	
	Z(bb), H(ZZ)	3.307	3.021	0.009	0.223	9.944	11 614	10.007	4.700	93.242	00
q	Z(CC), H(ZZ)	3.342	3.730	0.001	13.920	0.044	7.030	19.309	1.110	92.004	80
	Z(SS), H(ZZ)	5.150	0.101	0.764	15.397	12.224	34.342	25.942	9.488	90.512	
	Z(qq), H(ZZ)	13.447	15.479	0.775	15.904	12.341	12.392	29.662	11.409	88.591	
	$Z(VV),\Pi(JJ)$ $Z(a\overline{a}) = H(ZZ)$	13.944	4.100	19.437	26.901	10.980	0./01	17.017	19.410	80.590	90
	WW Z(xyy) H(ii)	13.908	15.919	1.041	1.461	28.719	25.454	13.497	23.807	76.193	00
		12.169	13.037	2.604	20.373	18.075	19.818	13.924	8.054	91.946	
	Zqq	15.268	9.949	13.869	10.759	14.403	15.849	19.903	15.753	84.247	
[7	15.000	0.010	10.000		11.100	15.010	10.000		04.047	

CERN

True

FUTURE CIRCULAR COLLIDER

eg B = $b\bar{b}$ pair found (no H or Z assignment yet)

Jet energies

- <u>Technique</u> of Jet energy "correction" by Patrick implemented
- Added the inversion of the directions matrix to FCCAnalysis
- Observe of small percentage of events with abnormal values after matrix inversion
 - Investigating this

- - Example: an $e^+e^- \rightarrow W^+W^- \rightarrow qqqq$ candidate • Four jets in the event and nothing else • Total energy and momentum are conserved
- - ⇒ $E_1 + E_2 + E_3 + E_4 = \sqrt{s}$ • $P_1^{x,y,z} + p_2^{x,y,z} + p_3^{x,y,z} + p_4^{x,y,z} = 0$
 - Jet directions ($\beta_i = p_i/E_i$) are very well measured

Patrick Janot

Precision with e⁺e⁻ colliders (4)

Why are e⁺e⁻ colliders the tool of choice for precision anyway ? (cont'd) • Electrons are leptons, i.e., elementary particles: no underlying event • Corollary: Final state has known energy and momentum: (\sqrt{s}, o, o, o)

• Jet energies (or di-jet masses: m_w) determined analytically by inverting the matrix No systematic uncertainty related to jet energy calibration

A lot of Z are available anyway to calibrate and align everything

Physics at Future Colliders 28-29 July 2016

Example of m_{ii} **distribution after energy correction**

- Example histograms on the MC sample where both Z, H decay to a pair of b
- Distributions shown are after the analysis where bbbb are found and assigned to H, Z
- The energy correction seems improve the distributions
- The corrected m_{ii} was used to perform the fit
- Plotted as well the $m_{Hii} + m_{Zii} m_Z$

mzii distributions

FCCAnalyses: FCC-ee Simulation (Delphes)

events / 1 GeV 10^{8} Z(cc) H(ττ) Z(qq) H(ττ Z(bb) H(ττ) Z(ss) H(ττ) Z(bb) H(Za) = Z(cc) H(Za) = Z(qq) H(Za) = Z(ss) H(Za) $\sqrt{s} = 240.0 \text{ GeV}$ Z(cc) H(WW Z(qq) H(WW Z(ss) H(WW Z(bb) H(WW) 10⁷ ≡ Z(cc) H(ZZ) Z(qq) H(ZZ) Z(ss) H(ZZ) $Z(\nu\nu)$ H(jj) ZZ Zqq $L = 5 \ ab^{-1}$ -Z(cc) H(gg) - Z(cc) H(ss) - Z(cc) H(cc) - Z(cc) H(bb)— Z(qq) H(gg) — Z(qq) H(cc) — Z(qq) H(bb) Z(qq) H(ss) $e^+e^- \rightarrow ZH$ 10⁶ ⊨ -Z(bb) H(ss) - Z(bb) H(gg) - Z(bb) H(bb) - Z(bb) H(cc) -Z(ss) H(bb) -Z(ss) H(gg) -Z(ss) H(ss) -Z(ss) H(cc)10⁵ **10**⁴ 10³ 10² 10 100 110 120 50 70 90 80 60 m_{Zjj} FUTURE CIRCULAR Brookhaven⁻ . CERN National Laboratory COLLIDER

FCCAnalyses: FCC-ee Simulation (Delphes)

m_{Hjj} distributions

FCCAnalyses: FCC-ee Simulation (Delphes)

FCCAnalyses: FCC-ee Simulation (Delphes)

m_{Hjj}

- final efficiency < than cut efficiency
 - events without 2 jet pair findings
 - Requesting fitting categories discriminate further against background

		Initial	Lepton cut	$M_{\rm vis}, heta_{ m vis}$	$ $ d_{ij}	fit cat.	Fit
$e^+e^- \rightarrow Z(cc)H(aa)$	Yield	9555	98.7	88.3	87.2	69.3	4479
	Sig.	0.508	50.1	00.0	01.2	05.0	1.329
$e^+e^- \rightarrow Z(cc)H(ss)$	Yield	28	99.0	88.4	86.3	67.9	
	Sig.	0.001					0.005
$e^+e^- \rightarrow Z(cc)H(cc)$	Y leid Sig	3374	96.6	88.1	86.1	70.1	2231
	Vield	67050					$\begin{array}{c} 0.002 \\ 1/370 \end{array}$
$e^+e^- \to Z(cc)H(bb)$	Sig.	3.616	89.7	83.5	81.2	68.0	13.166
	Yield	21835					6394
$e^+e^- \to Z(qq)H(gg)$	Sig.	1.162	99.8	86.2	85.2	60.3	1.897
$a^{\pm}a^{-} \rightarrow Z(aa) H(aa)$	Yield	64	00.0	96 G	84.6	56.9	26
$e^+e^- \rightarrow Z(qq)\Pi(ss)$	Sig.	0.003	99.9	00.0	04.0	50.2	0.008
$e^+e^- \rightarrow Z(aa)H(cc)$	Yield	7710	07.8	87 1	85.2	67.8	3918
	Sig.	0.410					1.162
$e^+e^- \rightarrow Z(qq)H(bb)$	Yield	155350	91.4	83.8	81.7	68.0	79138
	Sig.	8.200					23.477
$e^+e^- \to Z(bb)H(gg)$		12270 0.653	94.6	87.0	85.9	70.3	1745
	Yield	36					$\frac{1.149}{22}$
$e^+e^- \to Z(bb)H(ss)$	Sig.	0.002	95.0	87.3	85.1	72.2	0.007
$a^+a^- \rightarrow Z(hh) II(aa)$	Yield	4332	92.1	85.7	83.4	60 C	2927
$e^+e^- \rightarrow Z(00)H(cc)$	Sig.	0.231				09.0	0.868
$e^+e^- \rightarrow Z(bb)H(bb)$	Yield	87250	84.4	79.8	77.3	62.8	52595
	Sig.	4.643	01.1	10.0	11.0	02.0	15.603
$e^+e^- \rightarrow Z(ss)H(qq)$	Yield	12265	99.8	87.0	85.9	62.3	4345
	Sig.	0.653					1.289
$e^+e^- \rightarrow Z(ss)H(ss)$	Y leid Sig	30	99.9	87.2	85.2	58.3	
	Vield	4330					2551
$e^+e^- \rightarrow Z(ss)H(cc)$	Sig.	0.230	97.8	87.7	85.7	70.1	0.757
	Yield	87250	01.0		00.0		50559
$ e'e \rightarrow Z(ss)H(bb) $	Sig.	4.643	91.3	84.1	82.0	82.0 69.0	14.999

FUTURE CIRCULAR

COLLIDER

Yields & fit efficiencies $\sqrt{s} = 240 \,\text{GeV}, \mathcal{L} = 5 \,\text{ab}^{-1}$

	Yields	Lepton cut	$M_{\rm vis}, heta_{ m vis}$	$ d_{ij}$	fit cat.	Yield for I
$e^+e^- \to Z(bb)H(\tau\tau)$	9400	63.7	43.9	32.8	26.5	2
$e^+e^- \to Z(ss)H(\tau\tau)$	7320	67.1	48.3	36.4	26.8	1
$e^+e^- \to Z(cc)H(\tau\tau)$	9395	68.0	50.2	38.1	24.8	2
$e^+e^- \to Z(qq)H(\tau\tau)$	16730	67.9	50.1	38.1	22.1	2
$e^+e^- \to Z(bb)H(Z\gamma)$	230	86.5	62.4	61.3	43.5	
$e^+e^- \to Z(ss)H(Z\gamma)$	179	90.5	64.0	62.9	43.6	
$e^+e^- \to Z(cc)H(Z\gamma)$	230	91.7	63.7	62.5	39.6	
$e^+e^- \to Z(qq)H(Z\gamma)$	409	91.6	63.1	61.9	38.1	1
$e^+e^- \to Z(bb)H(WW)$	32250	64.7	57.4	54.6	35.0	86
$e^+e^- \to Z(ss)H(WW)$	25115	68.0	59.8	57.0	35.3	66
$e^+e^- \to Z(cc)H(WW)$	32235	68.7	59.9	57.0	27.4	60
$e^+e^- \to Z(qq)H(WW)$	57400	68.6	59.4	56.6	24.7	91
$e^+e^- \to Z(bb)H(ZZ)$	3958	81.8	60.6	57.8	39.3	12
$e^+e^- \to Z(ss)H(ZZ)$	3082	86.1	63.3	60.5	39.3	9
$e^+e^- \to Z(cc)H(ZZ)$	3956	87.5	63.9	61.1	36.3	10
$e^+e^- \to Z(qq)H(ZZ)$	7045	87.5	63.6	60.8	34.8	16
$e^+e^- \to Z(\nu\nu)H(jj)$	230955	87.5	00.1	00.0	00.0	
$e^+e^- \to W^+W^-$	82192500	64.1	45.1	37.9	12.0	81304
$e^+e^- \rightarrow ZZ$	6794950	79.8	43.4	38.1	12.2	6406
$e^+e^- \to Z/\gamma^*(q\bar{q})$	263269500	96.5	31.8	07.6	02.0	22953

Fitting strategy

Independent fit with <u>combineTF</u> gives compatible results

ZH final state		Precision
$Z \rightarrow jj \ (j = b, s, c, q)$	$H \to b \overline{b}$	0.3%
	$H \to c \bar{c}$	3.5%
	$H \to gg$	2.4%
	$H \to s \bar{s}$	436%

Reminder $ZH(\nu\nu ii)$ analysis

• For the fit the HiggsAnalysis-CombinedLimit was used (within CMSSW - <u>http://cms-analysis.github.io/HiggsAnalysis-</u> <u>CombinedLimit/</u> (open access)) along with CombineHarvester (<u>http://cms-analysis.github.io/CombineHarvester/</u>)

Combine $Z(\nu\nu)H\& Z(qq)H$

- First attempt to fit the inv. and full hadronic channels with combine

ZH final s

$$Z \to jj \ (j = b, s, c, c)$$

 $Z \rightarrow \nu \nu$

• For the fit the HiggsAnalysis-CombinedLimit was used (within CMSSW - <u>http://</u> cms-analysis.github.io/HiggsAnalysis-CombinedLimit/ (open access)) along with CombineHarvester (<u>http://cms-analysis.github.io/CombineHarvester/</u>)

Expected Precision for the $\sigma(ZH) \times BR(H \to jj)$ at 68% CL

state		Precision
	$H \to b \overline{b}$	0.2%
q)	$H \to c \bar{c}$	2.1%
	$H \to gg$	1.0%
	$H \to s \bar{s}$	130%

Summary

- Analysis performed on the ZH full hadronic final state using the winter2023 datasets, IDEA detector, ParticleNet tagger
- Analysis strategy on jet scores gives encouraging preliminary results
 - Work is ongoing to improve the jet pairs and "recover" events where no pairs are found (if possible)
- Analysis suffers (compared to leptonic channel) from the jet energy resolution and the ambiguities of jets originated to Z, H but benefits from high BR
 - Work towards to optimise method, clustering techniques to see if the result can improve
- Fit on 4 signal strength shows encouraging results (validated with other techniques) • First attempt to combine $ZH(\nu\nu jj)$ and ZH(jjjj)
- We will now be looking into the tracker layout(s) for additional improvements

Backup

Jet energy

- We flag events that show abnormal values after the matrix inversion
- The percentage of events with this flag is shown on the tables <u>after the</u> <u>above cuts</u>
- Signal events are 0.1-0.2% of events
- Background events vary from 0.1-0.6%
- Not significant fraction

e^+	е
e^+	е
e^+	е
e^+	e
e^+	е
e^+	e
e^+	0
e^+	е

total events normalised to 1

	flag		flag
$\overline{} \rightarrow Z(cc)H(gg)$	0.012	$e^+e^- \to Z(bb)H(\tau\tau)$	0.032
$- \rightarrow Z(cc)H(ss)$	0.012	$e^+e^- \rightarrow Z(ss)H(\tau\tau)$	0.040
$- \rightarrow Z(cc)H(cc)$	0.015	$e^+e^- \to Z(cc)H(\tau\tau)$	0.037
$ \rightarrow Z(cc)H(bb)$	0.019	$e^+e^- \to Z(qq)H(\tau\tau)$	0.040
$- \rightarrow Z(qq)H(ss)$	0.008	$e^+e^- \to Z(bb)H(Za)$	0.017
$- \rightarrow Z(qq)H(gg)$	0.008	$e^+e^- \to Z(cc)H(Za)$	0.014
$- \rightarrow Z(qq)H(cc)$	0.012	$e^+e^- \to Z(qq)H(Za)$	0.012
$- \to Z(qq)H(bb)$	0.017	$e^+e^- \to Z(ss)H(Za)$	0.012
$- \rightarrow Z(bb)H(ss)$	0.018	$e^+e^- \to Z(cc)H(WW)$	0.060
$ \rightarrow Z(bb)H(gg)$	0.018	$e^+e^- \to Z(qq)H(WW)$	0.061
$ \rightarrow Z(bb)H(bb)$	0.022	$e^+e^- \to Z(ss)H(WW)$	0.061
$- \rightarrow Z(bb)H(cc)$	0.020	$e^+e^- \to Z(bb)H(WW)$	0.057
$- \rightarrow Z(ss)H(bb)$	0.017	$e^+e^- \to Z(bb)H(ZZ)$	0.053
$- \rightarrow Z(ss)H(gg)$	0.009	$e^+e^- \to Z(cc)H(ZZ)$	0.055
$- \rightarrow Z(ss)H(ss)$	0.009	$e^+e^- \to Z(qq)H(ZZ)$	0.056
$- \rightarrow Z(ss)H(cc)$	0.012	$e^+e^- \to Z(ss)H(ZZ)$	0.056
		$e^+e^- \to Z(\nu\nu)H(jj)$	0.000
		$e^+e^- \to W^+W^-$	0.032
		$e^+e^- \to ZZ$	0.012
		$e^+e^- \to Z/\gamma^*(q\bar{q})$	0.009

